
Martin-Luther-Universität
Halle-Wittenberg

Naturwissenschaftliche Fakultät II
Institut für Physik

Master Thesis
A thesis submitted in fulfillment of the requirements

Master of Science

Medical Physics

Machine Learning Optimization of
Gaussian Basis Sets

Submitted by:
Jacob Schmieder

Matriculation Number: 215207342

Submission Date:
6. October 2022

Primary Supervisor: Prof. Dr. Miguel Marques
Second Supervisor: PD Dr. Jürgen Henk

Abstract

In this Thesis, machine learning algorithms are used to reduce the number of func-
tions in a Gaussian basis set for ab initio DFT calculations. In theoretical quantum
chemistry, the Density functional theory (DFT) is heavily used. For an accurate calcu-
lation, suitable Gaussian basis sets are indispensable. Large basis sets are required to
do state-of-the-art ab initio DFT calculations. At the same time, the calculated sys-
tems are enormous. Therefore, numerous Gaussian basis sets have been created over the
last several decades. Combining large systems with large basis sets leads to enormous
computation time, even using large computer clusters. Machine learning algorithms can
reduce the number of required basis functions for specific molecules. Therefore, different
basis sets were optimized for over one hundred molecules. The results are discussed from
the perspectives of physics and machine learning. While the machine learning process
works, the basis sets do not significantly advance ab initio DFT calculations.

2

“It has been said that the tabulation of a function of one variable requires a
page, of two variables a volume, and of three variables a library; but the full

specification of a single wave function of neutral Fe is a function of seventy-eight
variables. It would be rather crude to restrict to 10 the number of values of each

variable at which to tabulate this function, but even so, full tabulation of it
would require 1078 entries, and even if this number could be reduced somewhat
from considerations of symmetry, there would still not be enough atoms in the

whole solar system to provide the material for printing such a table.”

- Dougals Rayner Hartree 1948[1]

Contents

Contents

Abstract 2

Introduction 8

1 Basics 10
1.1 Density functional theory . 10

1.1.1 The Variational Principle . 12
1.1.2 Hartree-Fock Approximation . 12

1.1.2.1 Electron Correlation . 15
1.1.3 Hohenberg-Kohn Theorems . 16
1.1.4 Kohn-Sham Approach . 17
1.1.5 The exchange-correlation potential 19
1.1.6 The LCAO Ansatz in the Kohn-Sham Equations 21
1.1.7 Basis Sets . 24

1.2 Optimization using Machine Learning . 27
1.2.1 Gradient Descent . 30
1.2.2 Adam . 31

1.3 Automatic differentiation . 33
1.3.1 Forward Mode . 35
1.3.2 Reverse Mode . 36

2 Optimize Basis Set 39
2.1 Projection between two basis sets . 39
2.2 The loss functions . 40
2.3 The optb module . 41
2.4 Optimization example of a basis set for molecule 43

3 Evaluation 47
3.1 Select Optimized basis sets . 48
3.2 About the successful optimizations . 49
3.3 Non-weighted loss function optimization 50
3.4 Evaluation of the weighted optimization 54
3.5 The machine learning . 57

3.5.1 Comparison of Adam and gradient descent 57
3.5.2 Learning rate dependency . 58

4 Résumé and Outlook 63

4

Contents

Bibliography 65

Appendix 71

Declaration of authorship 92

Acknowledgement 93

5

Acronyms

Acronyms

AD automatic differentiation. 9, 31, 33–38

Adam adaptive moment estimation. 31, 42, 48

AI Artificial Intelligence. 27, 63

ao atomic orbital. 25

ASE Atomic Simulation Environment. 41

au atomic units. 11

bse basis set exchange. 41, 42

CGF contracted Gaussian function. 25

DFT Density functional theory. 2, 8, 11, 16, 17, 20, 21, 24–27, 33, 41, 42, 47, 48, 53, 63

DQC Differentiable Quantum Chemistry. 41, 42

gd gradient descent. 29–32, 48, 58, 62

GGA generalized gradient approximation. 21

GTO Gaussian-type-orbital. 24, 25, 40

HF Hartree-Fock Approximation. 12–18, 21, 22

KS Kohn-Sham Approach. 8, 17, 19, 21, 23

LCAO linear combination of atomic orbitals. 8, 21, 23

LDA local density approximation. 20, 21

LSD local spin-density. 20

LSDA local spin-density approximation. 20, 21

ML Machine Learning. 27, 28, 31, 33, 37, 39–42, 47–49, 57, 61, 62, 77

RHF restricted Hartree-Fock. 15, 16

6

Acronyms

STO Slater-type-orbitals. 24, 25, 47

UHF unrestricted Hartree-Fock. 15, 16

xc exchange-correlation potential. 18–21

7

Introduction

Introduction

The quote from the beginning of this Thesis (page 3) originates from Dougals Rayner
Hartree after he and Wladimir Alexandrowitsch Fock invented their first approximation
to solve the Schrödinger equation. Furthermore, to find the Ground State Energy of
a given System of Particles. The method was titled, by their inventors, the Hartree-
Fock Method. It was one of the first approaches to solve the Schrödinger equation
not exactly but throw a well-chosen Approximation. Hartree made it possible to solve
complex quantum mechanical systems. While only for the hydrogen molecule does an
analytical solution is known. Afterward, Walter Kohn and Lu Jeu Sham invented their
Kohn-Sham Approach (KS), and the modern Density functional theory (DFT) was born.
By applying the linear combination of atomic orbitals (LCAO) approach, which John
Lennard-Jones invented in 1929, it was possible to use computers to run ab initio DFT
calculations. With the invention of modern computer science, it was possible to solve
more complex structures, from larger molecules to Protein structures. Nowadays, solv-
ing Density functional theory (DFT) calculations with thousands of atoms is possible.
Using the LCAO approach requires an approximation of the exact wave function. These
approximations are constructed by combining multiple functions of a particular type,
called a basis set. A popular approach to the basis sets in chemistry is a combination of
Gaussian-type functions. The first Gaussian basis set was invented by Hehre, Stewart,
and Pople and constructed out of three Gaussian functions. Since the first invention
of Gaussian basis sets, scientists creating entire libraries of basis sets like basis set ex-
change [3]. However, one problem does exist with all of these basis sets: Simultaneously
by increasing the precession of the approaches, the amount of mandatory functions is
also increasing rapidly. Consequently, more precise basis sets consist of more functions
and require more calculation time. A small basis set consists of less primitive Gaussian
functions than a more extensive basis set.
At the time of Hartree’s statement, Computers were not much more than gigantic cal-
culators, which required an entire factory hall to do simple operations. Nevertheless,
until now, Computers are way more than just calculators. Today, computers can learn
by themself due to machine learning algorithms. Which are invented by humans.
Therefore, the basic idea of this Thesis is:

Attempt to improve the quality of Gaussian basis sets using machine learning methods.

Therefore, the idea is to use two different basis sets. One reference basis set with many
Gaussian functions as a basis set with a high degree of accuracy, and one initial basis
set which is smaller and leads to a less accurate result in the DFT calculation. Those
two basis sets are compared using a projection. The machine learning algorithm should
try to improve the quality of the smaller basis set by comparing it to the larger one by

8

Introduction

minimizing the Projection.
In Hartree’s spirit, the goal is to reduce the amount of mandatory primitive Gaussian
functions as he reduced the total amount of wave functions.

In this Thesis, modern machine learning frameworks that can utilize automatic differ-
entiation (AD) methods are used and further developed. These Frameworks then will try
to improve different basis sets for particular molecules provided by different databases,
including over one hundred molecules. After thousands of conducted optimizations, the
results will be evaluated. In the basics part and during the evaluation process, the reader
will encounter information bout machine learning, Informatics, physics, and chemistry.

9

1 Basics Density functional theory

1 Basics

This chapter should give a good foundation for the results and the working code in the
second part of this Thesis. It has to be said that this will be a breath introduction to
all of these topics so that it will be possible to bring the results into a good perspective
relative to their scientific background. Therefore, we want to split the basics up into three
major sections. First, the basics of the density functional theory will be discussed and
should provide the physics and chemistry background. After building these foundations,
the topics will change to the informatics and machine learning side of this Thesis. In the
machine learning part, the first thing will be a brief introduction about machine learning
in general and what makes the code used during this Thesis so unique by describing how
automatic differentiation works and whether it improves machine learning. We now want
to begin with the basics of DFT.

1.1 Density functional theory
Before jumping directly into the density functional theory, let us start with the intro-
duction to quantum chemistry, e.g., physics.

The Ansatz in quantum chemistry is simple: Try to find something that approximates
the solution of the non-relativistic Schrödinger equation well enough. The stationary
Schrödinger equation and therefore the Hamilton Ĥ describes a system consisting of M
nuclei as well as N electrons in the form of:

ĤΨi(~x1, ~x2, . . . , ~xN , ~R1, ~R2, . . . , ~RM) = EiΨi(~x1, ~x2, . . . , ~xN , ~Ri, ~R2, . . . , ~RM) (1.1)

Ĥ = −1
2

N∑
i=1

∇2

︸ ︷︷ ︸
T̂e

−1
2

M∑
A=1

1
MA

∇2
A︸ ︷︷ ︸

T̂n

−
N∑

i=1

M∑
A=1

ZA

riA︸ ︷︷ ︸
Ûen

+
N∑

i=1

N∑
j>i

1
rij︸ ︷︷ ︸

Ûnn

+
M∑

A=1

M∑
B>A

ZA ZB

RAB︸ ︷︷ ︸
Ûee

(1.2)

Here i, j runs over the N (number of electrons) and A, B runs over M (the individual
Nuclei)[4, p.3]. This system can be everything from a single particle, like an electron,
over an Atom like hydrogen, or iron, to smaller or larger molecules like H2 or ethanol
(C2H5OH). Even large solids, amino acids, proteins, or anything else consisting of quan-
tum mechanical partials can be described as such a system. In this Thesis, in particular,
the small molecules will be relevant. To clarify equation 1.2 further, it is useful to split
up the terms:

10

1 Basics Density functional theory

• T̂e kinetic operator for all electrons in the system [4]

• T̂n kinetic operator for all nuclei in the system [4]

• Ûen total potential energy for the electron-nucleus Coulombic attraction [4]

• Ûeetotal potential energy for the Coulombic electron-electron repulsion [4]

• Ûnn total potential energy for the Coulombic nuclei-nuclei repulsion [4]

Ψi represents the wave function for the i’th state of the system. Ψi depends on the 3N
spatial coordinates ri as well as N spin coordinates si. Equation 1.2 is written in a very
compact form without any physical constants. Instead of using physical constants to
describe the system, in DFT, the atomic units (au) (also called Hartree atomic units)
are used. The Hartree Units are displayed in figure 1.1.

Figure 1.1: Tabular with the relevant Hartree atomic units [4]

The Schrödinger equation can further simplify, as there is a considerable difference
between the masses of the nuclei and the electrons. Even the lightest 1H has about 1800
times the mass of a single electron. Consequently, the nuclei are way slower than the
electrons, and the system can be approximated by fixed nuclei and moving electrons
[4]. To omit the movement of the nuclei is called Born-Oppenheimer- or clamped-nuclei
approximation. The kinetic energy of the nucleus thus vanishes, and the potential energy
of the nucleus-nucleus repulsion is more or less equal for every nucleus within a constant.
The Hamiltonian reduces to the so-called electronic Hamiltonian [4, p. 5].

Ĥelec = −1
2

V∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1
rij

= T̂ + V̂Ne + V̂ee (1.3)

The solution of equation 1.3 is the electronic Energy, Eelec the nuclear coordination
depends only on parameters, not explicitly on Ψelec. So the total energy is given by the
sum of Eelec and the constant nuclear repulsion term:

Enuc =
M∑

A=1

M∑
B>A

ZAZB

rAB
(1.4)

11

1 Basics Density functional theory

The Operator V̂Ne converts into an external potential and may include magnetic or
electronic problems (for example, an external magnetic field).
The wave function Ψi is not observable. But its squares represents the probability to
find the electrons 1, 2, . . . , N simultaneously in their volume dV N = dV1 . . . dVN , [4, p.
6]. Remember that electrons are fermions. By nature, they are indistinguishable (eq.
1.5) as well as antisymmetric with spin = 1/2 (eq. 1.6).

|Ψ(~x1, ~x2, . . . , ~xi, ~xj , . . . , ~xN)|2 = |Ψ(~x1, ~x2, . . . , ~xj , ~xi, . . . , ~xN)|2 (1.5)
Ψ(~x1, ~x2, . . . , ~xi, ~xj , . . . , ~xN) = −Ψ(~x1, ~x2, . . . , ~xj , ~xi, . . . , ~xN) (1.6)

Integrate over all possible states of the wave functions over the full space equals 1.∫
· · ·
∫

|Ψ(~x1, ~x2, . . . , ~xN)|2d~x1 ~x2 . . . ~xN = 1 (1.7)

Then this is called normalized to one. From now on, all wave functions are normalized.

1.1.1 The Variational Principle
Up to this point, all is standard quantum mechanics. Unfortunately, there is no known
way to solve the Schrödinger equation for large N . Nevertheless, there is a way to at
least find an approximation using the variational principle. Therefore, a guess Ψtrial for
the expected ground state of the Hamilton Operator Ĥ represents the upper bound to
the real ground state energy.

〈Ψtrial| Ĥ |Ψtrial〉 = Etrial ≥ E0 = 〈Ψ0| Ĥ |Ψ0〉 (1.8)

If Ψtrial ≡ Ψ0 equality holds. It’s important to mention that Ψtrial is a functional 1. The
task is to minimize E[Ψ] by going through all relevant (all functions that make physical
sense, which means at least they should be normalized and square-integrable) N-electron
wave functions [4, p.8].

E0 = min
Ψ→N

E[Ψ] = min
Ψ→N

〈Ψ| T̂ + V̂Ne + V̂ee |Ψ〉 (1.9)

Of course, it is not possible to calculate all allowed functions. Instead, use a subset of
the given wave functions and find the best approximation for E0 within this subset of
Ψ. Which is the basic idea of the Hartree-Fock Approximation (HF) [4].

1.1.2 Hartree-Fock Approximation
One of the fundamental concepts of DFT is the Hartree-Fock Approximation (HF). A
simple, practical way for a many-electron system is to define an antisymmetric product
of N one-electron wave functions. Usually referred to as a Slater determinant[4]:

1for more information, check out [5]

12

1 Basics Density functional theory

Ψ0 ≈ ΦSD = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) . . . χN (~x1)
χ1(~x2) χ2(~x2) . . . χN (~x2)

...
...

χ1(~xN) χ2(~xN) . . . χN (~xN)

∣∣∣∣∣∣∣∣∣∣∣
(1.10)

= 1√
N !

det{χ1(~x1)χ2(~x2) . . . χN (~xN)} (1.11)

The Slater determinant is asymmetric, which means it changes its sign upon exchange
of two rows or two columns. χi(~xi) is called spin orbital and is an effective one-particle
problem. χi(~xi) can be constructed through spatial orbitals φi and one of the two spin
functions α(s) and β(s) where s = ±1

2 .

χ(x) = φ(r) σ(s) , σ = α, β (1.12)

α(s) and β(s) has to be orthogonal, that means:

〈α|α〉 = 〈β|β〉 = 1
〈α|β〉 = 〈β|α〉 = 0

Consequently, also the spin orbitals are primarily defined as orthogonal:∫
χ∗

i (~x)χi(~x)d~x = 〈χi|χj〉 = δij (1.13)

Where δij refers to the Kronecker delta symbol. In the HF scheme, the spin orbitals are
chosen analogous to the wave function in quantum physics. To summarize, |χ(~x)|2d~x
is the probability to find the electron with spin σ in a given volume element d~x3. The
prefactor gives the normalization 1√

N ! . So an N-electron wave function Ψexact is replaced
by a single Slater determinant ΦSD. Now the variational principle can be used to find
the best Slater determinant. For the Hartree-Fock Energy, this looks like this:

EHF = min
ΦSD→N

E[ΦSD] (1.14)

Hence the expectation of the Hamilton Operator is given by:

EHF = 〈ΦSD| Ĥ |ΦSD〉 =
N∑
i

(i|ĥ|i) + 1
2

N∑
i

N∑
j

(ii|jj) − (ij|ji) (1.15)

Where:

(i|ĥ|i) =
∫ ∫

|χ∗(~xi)|

− 1
2∇2 −

M∑
A

ZA

r1A

|χ(~xi)|d~x1 (1.16)

Equation 1.16 defines the contribution due to the kinetic energy and the electron-nucleus
attraction. The last term in (1.14) can be split into the so-called Coulomb (eq. 1.17)and
exchange (eq. 1.18) integrals.

13

1 Basics Density functional theory

(ii|jj) =
∫ ∫

|χi(~x1)|2 1
r12

|χj(~x2)|2d~x1d ~x2 (1.17)

(ij|ji) =
∫ ∫

χi(~x1)χ∗
j (~x1) 1

r12
χj(~x2)χ∗

i (~x2)d~x1d ~x2 (1.18)

EHF is again a functional of the set of {χi}, which has to be orthogonal. To ensure the
orthogonality, the Lagrangian multipliers εi will be introduced. The physical interpre-
tation of the εi is the orbital energy. The best spin Orbitals can be described by the
Hartree-Fock equations (where {χi}, EHF is minimal)[4]

f̂χi = εiχi , i = 1, 2, . . . , N (1.19)

f̂i = −1
2∇2

i −
M∑
A

ZA

riA
+ VHF (i) (1.20)

The Fock Operator f̂ is an effective one-electron operator. The first two terms of f̂i

are already known. The new introduced VHF (i) is the HF potential: It is the average
repulsive potential experienced by the i’th electron due to the remaining N-1 electrons.[4,
p. 11] As a consequence, the two-electron repulsion operator 1

rij
simplifies to a one-

electron operator, where the repulsion takes place just in an average way. Explicitly:

VHF (~x1) =
N∑
j

(
Ĵj(~x1) − K̂j(~x1)

)
(1.21)

Where Ĵj is the Coulomb Operator:

Ĵj(~x1) =
∫ ∣∣χj(~x2)

∣∣2 1
r12

d~x2 (1.22)

The electron on position ~x1 experiences the average charge distribution of another elec-
tron χj . Ĵj(~x1) is just weighed by the probability that another electron is at the same
point in space. Consequently, Ĵj(~x1) only depends on one spin orbital χj(~x1) and his
position, ~x1 is called local. The second term K̂j(~x1) is the exchange contribution and has
no classical interpretation. However, it can be defined by the effect when an operation
on a spin-orbital:

K̂j(~x1)χi(~x1) =
∫

χ∗
j (~x2) 1

rij
χi(~x2) d ~x2χj(~x1) (1.23)

because K̂j(~x1) depends not only on a single spin orbital χi but on another spin orbital,
χj consequently it’s called non-local. Since the spin orbitals are orthogonal, only parallel
spins exist. In case of antiparallel spins the therms, 〈α(s2)|β(s2)〉 e.g., 〈β(s2)|α(s2)〉 are
zero and vanishes the integral. The 1

r12
operator is spin independent. It is important

to mention that the term i = j is allowed in eq. 1.21. Therefore, the result of a single
electron repulsion with itself is more significant than zero. This is called self-interaction.

14

1 Basics Density functional theory

Nevertheless, even then, the equation takes care. The exchange term for i = j reduces to,∫ ∫ ∣∣χi(~x1)
∣∣2 1

r12

∣∣χi(~x2)
∣∣2 d~x1d~x2 so the self-interaction is canceled by eq. 1.21. Because

of eq. 1.19 is not a regular eigenvalue problem, rather it’s a pseudo-eigenvalue problem
and has solved iteratively. Therefore, it’s called self-consistent field (SCF) [4]. We guess
a set of finite basis sets to solve this iteratively to expand the molecular orbitals (shown
in more detail in the KS scheme like figure 1.3).

1.1.2.1 Electron Correlation

Figure 1.2: Difference in the relative Energy in Hartree of H2, for different Models.
The exact value comes by solving the two-electron Schrödinger equation.
unrestricted Hartree-Fock (UHF) describe the unrestricted HF method and
is more precise than the restricted HF (restricted Hartree-Fock (RHF)),
further away.

EHF
C = E0 − EHF (1.24)

As the Hartree-Fock method is an approximation, the correlation energy EHF
C declares

the difference between the calculated minimal HF Energy and the actual ground state
Energy (done by Löwdin [6] and within the Born- Oppenheimer approximation). EHF

C

has to be always negative since E0 and EHF are smaller than zero as well as |E0| >
|EHF |. In figure 1.2 the difference caused by the electron correlation is shown. The
primary reason for the difference in the energy is caused by instantaneous repulsion
by the electrons in the effective HF potential. This effect is directly connected with
the dynamic correlation caused by the 1/r12 term. On the other hand, there is a non-
dynamical term that results from the relatively bad approximation of the ground state
by the Slater determinants. As shown in fig. 1.2 the RHF yields a good approximation
for the H2 molecule at the ground. In the RHF case, the electrons build up a system that
can be handled as a singlet system (e.g., water). The most common solution is to use

15

1 Basics Density functional theory

doubly occupied spatial orbital φa by opposite spins χa and χb. [4, p.14] The dynamic
correlation error (the major part for H2) is just 0.04Eh. If the distance increases, the
RHF diverges. A better approach then is the UHF where different orbitals, for example
α and β experience different potentials, V α

HF e.g., V β
HF . The Slater determinant does not

yield an eigenfunction of the total spin operator, 〈S2〉, so it is less physical meaningful
[4, p.14]

1.1.3 Hohenberg-Kohn Theorems
The Paper of Hohenberg and Kohn from 1964 [7] laid the foundation for the later dis-
covered Density functional theory (DFT). Where in the HF method, the actual position
of the electrons is necessary, Hohenberg and Kohn introduce the electronic density and
claim that the electronic density could fully define the ground state of the system:

the external potential Vext(~r) is (to within a constant) a unique functional of ρ(r);
since, in turn Vext(~r) fixes, Ĥ we see that the full many particle ground state is a

unique functional of ρ(r). [4, 7]

The proof can be done by reductio ad absurdum, see [4, 7]. ρ(r) is the electron density
and can be defined as:

ρ(~r) = N

∫
· · ·
∫ ∣∣Ψ(~x1, ~x2, . . . , ~xN)

∣∣2 d~s1d ~x2 . . . d~xN (1.25)

ρ(r) determines the probability of finding any of the N electrons in the given volume
element d~r1 but with arbitrary spin, while the other N-1 electrons have arbitrary

positions and spin in the state represented by Ψ. [4]
The electronic density was first introduced simultaneously but independent by Enrico
Fermi and Llewellyn Thomas in 1927. According to Hohenberg-Kohn, it is possible to
separate the energy expression into two different parts. The first part can be expressed
as:

E0[ρ0] =
∫

ρ0(~r)VNed~r︸ ︷︷ ︸
system dependend

+ T [ρ0] + Eee[ρ0]︸ ︷︷ ︸
universal valid

(1.26)

further, it is possible to define the universal Hohenberg-Kohn functional:

FHK [ρ] = T [ρ] + Eee[ρ] = 〈Ψ| T̂ + V̂ee |Ψ〉 (1.27)

To solve the Hohenberg-Kohn functional is unfortunately nearly impossible for neither
〈Ψ| T̂ |Ψ〉 nor 〈Ψ| V̂ee |Ψ〉 for molecules bigger than hydrogen, it would be the holy grale
of DFT to find the exact Functional [4, 8]. To overcome this problem, the second
Hohenberg-Kohn Theorem uses the variational principle.

〈Ψ| Ĥ |Ψ〉 = 〈Ψ| T [ρ]+Eee[ρ]+vext |Ψ〉 =
∫

ρ0(~r)VNed~r+T [ρ0]+Eee[ρ0] ≥ E0[ρ0] (1.28)

Therefore, the calculated ground state energy using the electronic density will always be
higher than the actual ground state energy.

16

1 Basics Density functional theory

1.1.4 Kohn-Sham Approach
The Hohenberg-Kohn Theorems are building up the foundation of the Kohn-Sham Ap-
proach Approach and what will be called Density functional theory in modern days. The
basic idea of Kohn-Sham DFT is to map a system of interaction electrons onto a system
with non-interacting electrons and express the difference between those two systems by
an effective potential, including the unknown exchange-correlation potential.

Therefore, Hohenberg-Kohn already defines the ground state of an atomic or a molec-
ular system as:

E0 = min
ρ→N

(F [ρ] +
∫

ρ(~r)VNed~r) (1.29)

F [ρ] = T [ρ(~r)] + J [ρ(~r)] + Encl[ρ(~r)]] (1.30)
In the spirit of the Hartree-Fock Approximation, it is possible to define a non-interacting
reference system with a Hamiltonian in the form of:

ĤS = −1
2

N∑
i

∇2
i +

N∑
i

VS(~ri) (1.31)

where VS(~ri) is an effective local potential. The ground state can be constructed by a
single Slater determinant (e.g., equation 1.10):

ΘS = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(~x1) ϕ2(~x1) . . . ϕN (~x1)
ϕ1(~x2) ϕ2(~x2) . . . ϕN (~x2)

...
...

ϕ1(~xN) ϕ2(~xN) . . . ϕN (~xN)

∣∣∣∣∣∣∣∣∣∣∣
(1.32)

For clarity in eq. 1.32 the nomenclature has changed as the φi now the Kohn-Sham
orbitals. In analogy to HF the one electron, the Kohn-Sham operator can be defined as:

f̂KSϕi = εiϕi (1.33)

f̂KS = −1
2∇2 + VS(~r) (1.34)

The density is expressed throw the Kohn-Sham orbitals by a summation of the different
squared orbitals ϕi. By the summation over all orbitals, the density exactly equals the
ground state density of the real system of electrons[4, p. 43].

ρS(~r) =
N∑
i

∑
s

∣∣ϕi(~r, s)
∣∣2 = ρ0(~r) (1.35)

The Kohn Shams electron is a non-interacting particle sharing the same density as
its interacting counterparts. The solution of a non-interacting system is not equal to an
interacting one, so the kinetic energy is not equal.

TKS 6= Treal (1.36)

17

1 Basics Density functional theory

To overcome this problem, put everything unknown into a new potential and call it
exchange-correlation potential (xc) potential. The potential itself is not known explicitly
but yields the relevant information [8].

EXC [ρ] ≡ (T [ρ] − TS [ρ]) + (Eee[ρ] − J [ρ]) = Tc[ρ] = Encl[ρ] (1.37)

As expected, EXC is a functional of the density, ρ. TS is the kinetic energy of the none
interaction Kohn-Sham orbitals:

TS = −1
2

N∑
i

〈ϕi| ∇2 |ϕi〉 (1.38)

The kinetic energy does not directly dependent on the density but the Kohn-Sham
orbitals. Which are determined by the density (eq. 1.35). The effective local potential
VS (e.g. 1.34) now includes the exchange potential.

(
− 1

2∇2 +
[∫

ρ(~r2)
r12

+ VXC(~r1) −
M∑
A

ZA

r1A

])
ϕi

=
(

− 1
2∇2 = VS(~r1)

)
ϕi = εiϕi

(1.39)

Which is again eq. 1.34 but now VS has been defined throw the exchange-correlation
potential.
Consequently, the Kohn-Sham orbitals can be calculated in analogy to the HF using an
iterative procedure (as shown in fig. 1.3).

18

1 Basics Density functional theory

Figure 1.3: Self-consistency cycle in DFT calculations. Starting with an initial guess,
then calculating the effective potential and solving the Kohn-Sham Ap-
proach (KS) equation. Evaluating the outcome and, if it is converged,
output the result. If it is not converged, begin the cycle and use the cur-
rent result as a new input.[9]

The only thing left is the exact Functional of VXC respectively EXC . Since the term
is still unknown, it has just been defined as a functional derivative of EXC .

VXC ≡ δEXC

δρ
(1.40)

If EXC(ρ(~r)) it were known, it would be possible to determine the ground state [4].
Hence, VXC is not precisely known. Several theoreticians published various versions of
approximations to the exchange-correlation potential [10].

1.1.5 The exchange-correlation potential
Since the basic idea of inventing the xc Functional was to put everything unknown, it is
impossible to express it precisely. There are a couple of methods known to approximate
the xc potential.

19

1 Basics Density functional theory

The xc only depends on the electron density in a homogenous electron gas. In more real-
istic approaches, the Vxc depends on the density of position ~r itself but their derivatives.

Vxc[ρ]|~r = Xxc[ρ, ∇ρ, ∇2ρ, . . .]|~r (1.41)

Here the different methods will be discussed very briefly, as in the most DFT codes, it is
possible to use most methods out of the box, and no further information is mandatory to
handle these approximations. Therefore, in more detail, only the LDA and the B3LYP
potential will be discussed in this Thesis. The simplest method is the local density
approximation (LDA) Here Vxc only depends on the density at the position ~r but not
on the gradients [11].

In, LDA the energy can express as:

Exc[ρ] =
∫

ρ(~r)εxc[ρ]|rdr3 (1.42)

where:

εxc[ρ] = εDirac
x [ρ] = −3

4

(
3
π

) 1
3

ρ1\3 (1.43)

Does Dirac introduce electronic density? Often εxc is reffed to the average inter-electronic
distance rs

εDirac
x ∝ − 1

rs
rs =

(
3

4πρ

) 1
3

(1.44)

As found by Slater, the exchange interaction of an electron with a particular spin creates
a surrounding volume where the probability of finding another electron with an equal
spin is reduced [11]. This so-called exchange hole leads in the local spin-density
(LSD) which takes it into account. Int the LSD describes a uniform density inside a
sphere with the radius r0 and zero elsewhere. Then r0 has the size of the area, where
the probability of finding a second electron with equal spin is lowered [11].

r0 =
(

3
4πρ↑

) 1
3

(1.45)

The correlation part is usually obtained from quantum Monte Carlo simulations. One
of the simplest approaches is given by J. P. Perdew, and A. Zunger [12]

εP Z
c =

A ln(rs) + B + C rs ln(rs) + D rs r ≤ 1
γ

1+β1
√

rs=β2rs
rs > 1

(1.46)

As a further improvement to the LDA the local spin-density approximation (LSDA)
should be mentioned.

ELSDA[ρα, ρβ] =
∫

d~rρ(~r)εxc [ρα, ρβ] (1.47)

20

1 Basics Density functional theory

where the spin density is by ρ = ρα + ρβ.
If the density is not homogenous, the LDA gets on its limits. Then

ρ(~r) = ρ0 = ∆ρ(~r)
∣∣∣∆ρ(~(r)

∣∣∣ � ρ0 (1.48)

is no longer fulfilled. Here are the generalized gradient approximation (GGA)
steps in, and the xc energy now depends also on the gradients of ρ.

EGGA
xc [ρ] =

∫
εxc[ρ, ∇ρ, ∇2ρ]|~rdr3 (1.49)

The most common one is the PBE potential from Perdew, Burke, and Ernzerhof [13].
GGA can be improved by including the kinetic-energy density, called Meta-GGA’s.
For this Thesis, a Hybrid functional is used.
Hybrid functionals combining the Hartree-Fock and DFT by using correlation taken
from LDA and the exchange from Hartree-Fock Approximation (HF) [11]. The most
common Hybrid functional is the B3LYP Potential by Becke and Lee–Yang–Parr [4].

EB3LY P
xc = (1 − a) ELSDA

X + a EHF
x + b ∆EB88

x + (1 − c) ELSDA
c + c ELY P

c (1.50)

where:

a = 0.20 , b = 0.72, c = 0.81

ELSDA
x Becke 1993 exchange functional (LSDA)

EHF
x exact Hartree-Fock potential

EB88
x is the Becke 88 exchange functional (GGA) [14]

ELSDA
c S. H. Vosko; L. Wilk; M. Nusair correlation potential [15]

ELY P
c the Lee, Yang and Parr correlation functional [16]

With B3LYP, the absolute error concerning the G2 database is approximately 2kcal/mol,
which is quite good. The G2 database will be used in this Thesis; it will be explained
later [17]. As for simplicity, the functional is still heavily used in modern days, although
there are a bunch of better but more complex functional which lead to much more
necessary computational power [4].

1.1.6 The LCAO Ansatz in the Kohn-Sham Equations
After discussing the KS scheme and how to handle the exchange-correlation potential,
it is time to think about actually using this theory. In order to use the KS approach, it
is mandatory to create an efficient algorithm that is easy to compute, which leads to the
linear combination of atomic orbitals (LCAO) Ansatz. Other mentionable approaches
are, for example, the tight binding method or full numerical atomic orbitals. The one-
electron Kohn-Sham Approach equation looks like (compare equation 1.39):

21

1 Basics Density functional theory

(
− 1

2∇2 +
[N∑

j

∫ ∣∣ϕ(~r2)
∣∣2

r12
+ VXC(~r1) −

M∑
A

ZA

r1A

])
ϕi = f̂KSϕi = εiϕi (1.51)

The HF exchange operator (eq. 1.23) is known too.
Accordingly, a molecular orbital can be expressed by a linear combination of L prede-

fined basis functions {ηµ}.

ϕi =
L∑

µ=1
cµi ηµ (1.52)

Usually called basis sets. If L were infinity, the set was complete. However, for obvious
reasons, this will never be the case in real-world applications. The nonlinear problem is
now simplified to linear, with unknown coefficients cµi. The first basis sets, in this sense,
were inspired by the real eigenfunctions functions of the hydrogen atom. Furthermore,
it explains why these are called “atomic orbitals.” Inserting equation 1.52 into the 1.51
leads to [4]:

f̂KSϕi = εiϕi

f̂KS
L∑

µ=1
cµi ηµ = εi

L∑
µ=1

cµi ηµ

(1.53)

which is closely related to the HF scheme. by multiply the left side with an arbitrary
function ην and integrate over space, L equations are received [4].

L∑
ν=1

cνi

∫
ηµ(~r1)f̂KS(~r1)ην(~r1)d~r1︸ ︷︷ ︸
F̂KS

µν - Kohn-Sham matrix

= εi

L∑
ν=1

cνi

∫
ηµ(~r1)ην(~r1)d~r1︸ ︷︷ ︸

Ŝµν- overlap matrix

, 1 ≤ i ≤ L (1.54)

On both sides, the integrals are defining a matrix (F̂ KS
µν e.g., Ŝµν) with dimension L × L

and symmetry Mµν = Mνµ as well as self-adjoint or hermitian. Using S and F, the
coefficients of linear combinations can be expressed as a Matrix of dimension L × L. ε
is a diagonal Matrix containing the orbital energies

C =


c11 c12 . . . c1L

c21 c22 . . . c2L
...

...
cL1 cL2 . . . cLL

 ε =


ε1 0 . . . 0
0 ε2 . . . 0
...

...
0 0 . . . εL

 (1.55)

The preceding Matrices can be combined into a compact equation [4]:

FKS C = S C ε (1.56)

22

1 Basics Density functional theory

This generalized eigenproblem is solved using standard algorithms from linear algebra.
The Kohn-Sham matrix F KS become [4]:

F KS
µν =

∫
ηµ(~r1)

(
− 1

2∇2 −
M∑
A

ZA

r1A
+
∫

ρ(~r2)2

r12
+ VXC(~r1)

)
ην(~r1)d~r1

= −1
2

∫
ηµ(~r1)∇2ην(~r1)d~r1 −

∫
ηµ(~r1)

M∑
A

ZA

r1A
ην(~r1)d~r1

+
∫ ∫

ηµ(~r1)ρ(~r2)2

r12
ην(~r1) +

∫
ηµ(~r1)VXC(~r1)ην(~r1)d~r1 (1.57)

The first and the second part of equation 1.57 are electronic kinetic energy and the
electron-nuclear interaction. These only depend on the coordinates of one electron and
can be combined into a single integral.

hµν =
∫

ηµ(~r1)
(

− 1
2∇2 −

M∑
A

ZA

r1A

)
ην(~r1)d3r1 (1.58)

The one-electron contribution hµν can be calculated relatively easily using specific,
well-known fast algorithms. In the LCAO scheme, the density takes the form:

ρ(~r) =
N∑
i

∣∣ϕi(~r)
∣∣2 =

N∑
i

L∑
µ

L∑
ν

cµi cνi ηµ(~r1) ην(~r1) (1.59)

As the expansion coefficients carry all relevant information, equation 1.59 can be reduced
to:

Pµν =
N∑
i

cµi cνi (1.60)

Pµν is the density matrix. For each element µν. The Coulomb contribution of equation
1.57 leads to four-center-two-electron integrals (since four basis functions are necessary
for two electrons, e.g. atoms).

Jµν =
L∑
λ

L∑
σ

Pλσ

∫ ∫
ηµ(~r1) ην(~r1) 1

r12
ηλ(~r2) ησ(~r2) d~r1 d~r2 (1.61)

Up to this point, all the previous can similarly apply to the Hartree-Fock case. For
the correlation part, which is relevant for the Kohn-Sham Approach (KS), the exchange
integral looks like this:

V XC
µν =

∫
ηµ(~r1)VXC(~r1)ην(~r1)d~r1 (1.62)

Now, the important question is which basis sets exist and can be used in the LCAO
approach [4].

23

1 Basics Density functional theory

1.1.7 Basis Sets
Since DFT is a heavily used theory in quantum chemistry and physics, many approaches
to basis functions were introduced. Multiple different types of basis functions for various
use cases exist. In solid state physics, it is practical to use plane wave functions [10]. In
chemistry, the most used basis sets are the Gaussian-type-orbital (GTO) [18]. In this
Thesis, only the GTO basis is going to be discussed in more detail, but for completeness,
the difference between the GTO and the plane waves listed in a short tabular 1.1.

GTO plane waves
(+) atomic orbital-like orthogonal

Compact basis set independent of atomic positions
Analytic integration possible
for many operators
Optimal for regular grids.
Fourier transform again a Gaussian

(-) Non-orthogonal basis naturally periodic
Linear dependencies
for larger basis sets. many functions needed
Complicated to generate
and no easy way to improve.
Basis set superposition error (BSSE)
Molecules (wavefunction tails),
solids have different requirements

Table 1.1: Difference between plane waves and GTO [19] plane waves are usually used
in solid state physics. GTO basis sets describe molecules or proteins in
chemistry.

The goal when using a Gaussian basis is to simulate an atomic orbital function. There-
fore, from a historical and physical standpoint, the first basis was inspired by orbitals
quite similar to the orbitals of the hydrogen atom [4].

ηST O = N rn−1 exp{−ζr}Ylm(θ, φ) (1.63)

where Ylm(θ, φ) are the spherical harmonics. ζ controls the width of the orbital. The
main advantage of Slater-type-orbitals (STO) is their correct behavior for short- and
long-range interaction. Unfortunately, the many-center integrals (like in section 1.1.6)
are notoriously hard to calculate for STO functions. Because this is a significant dis-
advantage, Gaussian-type-orbital (GTO) basis functions are invented. A GTO function
looks like:

ηGT O = Nxlymzn exp{−ζr2} (1.64)
where N is the normalization factor to ensure

∣∣〈ηµ|ηµ〉
∣∣2 = 1 (where in general 〈ηµ|ην〉 6= 0

for µ 6= ν). ζ represents the width of the orbital again. L = l+m+n defines the orbital (s,
p, d). For L > 1 the number of required function exceeds by 2L+1. The main advantage

24

1 Basics Density functional theory

Figure 1.4: Comparison of the quality of the least-square fit of a 1s Slater function
(ζ = 1.0) obtained at the STO-1G, STO-2G, STO-3G level. [20, p. 158]

of GTO basis leads to the Gaussian product theorem, which says that a product of two
Gaussians is again a Gaussian. The disadvantage of GTO basis is the inaccurate long-
range behavior. A solution for this problem is relatively simple. Combining multiple
Gaussian functions by a linear combination mimics a STO basis.

ηCGF
τ =

A∑
a

daτ ηGT O
a (1.65)

ηCGF
τ then called contracted Gaussian function (CGF) [4] and is the primarily used type

of basis set in modern Kohn-Sham DFT [18].
The first, simplest and least accurate contracted Gaussian function (CGF) is the STO-

nG (where n is an integer number) basis set (as it is a CGF to mimic a STO basis).
In figure 1.4, three different STO-nG basis sets are shown. As more Gaussians are in
an CGF as better an approximation will be. Going more into detail on which type of
Gaussian basis functions there are.
A minimal basis set contains one basis function (CGF of multiple Gaussians) for each
atomic orbital (ao) of the atom (STO, GTO, CGTO)[18, 4]. In the Lithium atom, for
example, just two functions are mandatory to describe the atom (one 1s and one 2s
function). If there are multiple basis functions to describe an atomic orbital these are
called zeta- functions. For example, if there are two basis functions which describe one
ao it is called a double-zeta basis. If three basis functions describe one ao it is called
triple-zeta basis. Beyond this also quadrupole-, quintuple-zeta up to the 7th degree
exist. In the Lithium example, a double-zeta consists of four basis functions. For a
triple-zeta basis, already six functions are required again for each orbital. For larger and
more complex systems, the number of basis functions increases rapidly with the higher
zeta value (the required computational power). A split-valence basis set combines the
advantage of the zeta and minimal type basis (3-21G or 6-31G) [4]. In this case, only
one basis function is used to describe the core atomic orbital (because these are usually

25

1 Basics Density functional theory

irrelevant for chemistry). More extensive basis sets are used for the valence orbitals.
Counting them using 3-21G as an example basis set (a CGTO basis set): Carbon has one
contracted Gaussian function as a core function, a linear combination of three Gaussian
functions.
To simulate two interacting atoms, polarization functions are invented. A polarization
function adds one more atomic orbital to the basis set than would be necessary. This
function then is used as an angular momentum function [4]. The polarized basis set for
the hydrogen atom carries p-functions, where typically only s-function were required.
Again, these can be combined with the previously mentioned basis sets, like polarized
double-zeta basis. Note that there is one unique behavior for d and f orbitals in polarized
basis sets. For the d functions, sometimes 5 (called pure angular momentum functions
) and sometimes 6 functions (called 6 Cartesian d functions) are obtained to describe
the polarization (the sixth one looks like a 1s orbital and is not mandatory) [18]. In the
f-orbital, it is similar, using 7, e.g., ten functions.
At last, there are diffuse function, which have a very small ζ exponent, which held the
electron far from the actual nucleus. There are mandatory to describe anions or very
electronegative atoms as fluorine or when calculating van der Waals complexes.
With all these mentioned basis sets, it is possible to describe more or less everything
using DFT methods. For the individual problem, selecting a used basis set is relevant.
In most DFT simulations, different basis sets can be applied for different particles in the
system. Particles that are less relevant for the chemical problem get allocated smaller
basis sets, and the more relevant particles (for example, for a chemical reaction) get
allocated larger basis sets (for example, with diffuse functions). Using this method can
drastically reduce the computation time and needed computational power and makes
calculations for molecules in fluids only possible. So to reduce the number of mandatory
functions to a functional level is a real problem in the applied DFT science.

26

1 Basics Optimization using Machine Learning

1.2 Optimization using Machine Learning
In the first half of the last century, in 1959, Arthur Samuel, an IBM employee, was
the first one who describe some algorithms as machine learning and coined the term
[21]. At the same time, the DFT were invented. Since then, many things have changed,
computers are way more powerful, and the methods used are way more advanced. As
in this Thesis, Machine Learning (ML) optimization methods are used; this will be a
short digression to the Machine Learning field. This thesis uses the Machine Learning
for optimizations. Therefore, machine learning is just a tiny part of the huge field of
Artificial Intelligence (AI), which is also shown in figure 1.5. The AI is everything where
a computer program is used to understand or mimic human behavior.

Figure 1.5: Overview of modern machine learning algorithms. Artificial intelligence
is the most complex one and tries to mimic human behavior. Machine
learning is the ability to select the best result. deep learning can be used
to extract data for a machine earning algorithm.[22]

Some famous examples are AI programs that create customized advertising based on
search results or customized video recommendations based on previously watched videos.
Part of AI is the Machine Learning where the goal is that the program learns by itself
without an explicit way. Machine learning gets very famous for all other nature science.
Figure 1.6 shows the rapid increase of papers published in which machine learning has
been used. In particular, at a certain point where the way to go is to improve some
parameters manually, the ML can be very effective. In the same way, the ML is used
in this thesis to improve some parameters with machine learning which can variate the
parameters automatically, and not only that, the ML is also capable of making educated
guesses for the parameter selection.
For the optimization using, Machine Learning it is important to of some function which
will be optimized further on [22]. More precisely, to optimize the parameters (of the
function) to minimize the loss relative to an exact result. In this thesis, the unbounded

27

1 Basics Optimization using Machine Learning

Figure 1.6: Number of ML-related publications as since 2000. [23]

minimization problem will be solved using xitorch [24]. xitorch is a fully differentiable
machine learning framework based on the popular PyTorch framework [25].

y∗ = arg min
y

f(y, θ) (1.66)

The goal is to find the best y to minimize the output of function f [24]. For the
actual minimization, two different Optimizers can be used in xitorch. An Optimizer, in,
ML is an algorithm or method to minimize the so-called loss function [26]. In machine
learning, this function is usually called the loss function. The loss function can take a
hundred multidimensional inputs so that a hyperspace can be created for two different
input parameters, displayed in figure 1.7.

A loss function maps multiple parameters onto a real number, representing some “cost”
concerning the initial parameters [27]. Besides the loss function, every optimizer needs
a learning rate. The learning rate can be imagined as a step size in a specific direction.
In the best case, this direction point toward the minimum[26]. It is essential to choose
the learning rate wisely. Therefore, the learning rate is one of the last things in ML,
which is mainly chosen manually. There are approaches to using a neuronal network to
select the learning rate, but they are not used in this thesis. If the optimizer is on the
right way to find the minimum, this is also called the optimizer does converge . If the
optimizer is on the wrong way to find the minimum, this is called the optimizer does
diverge . The converging optimizer is shown in the left and middle plot of figure 1.8 the
diverging case is shown on the right plot. Figure 1.9 is displayed how The learning rate
affects the loss function in dependency of the done iterations of the optimization.

28

1 Basics Optimization using Machine Learning

Figure 1.7: Principle of how gradient descent (gd) is working. The distance between
the cross symbols equals the learning rate. While the surface spanned the
multidimensional loss function in dependency of both input parameters, w0
e.g. w1[22]

Figure 1.8: Selection of the learning rate, of a loss function J(θ).[26]

29

1 Basics Optimization using Machine Learning

Figure 1.9: Loss function in dependency of done iterations (epoch) for different learning
rates [28]

1.2.1 Gradient Descent
The first and simplest optimizer, is the gradient descent (gd) optimizer. gd is one of the
most famous optimizers to optimize neuronal networks [29]. gd is simple to implement
and very robust in terms of the input data. The major weakness is the weak performance
per learning step. Compared to other Optimizers, the time to find a minimum is by far
the longest. For the vanilla gd method, it will compute the gradient of a loss function
concerning the parameters θ for all the training data:

θ = θ − η∇̇θJ(θ) (1.67)

Here η is the learning rate. Note that the gradient for the whole dataset will be performed
in just one update. In pseudocode, the method looks like this:

for i in range(epochs) do
params_grad = evaluate_gradient(loss_function, data, params)
params = params − learning_rate ∗ params_grad

end for
In xitorch the gd method enhances by adding a momentum to, gd which is shown in
figure 1.10.

The gd algorithm has problems navigating in areas where the surface curves are much
more steeply in one dimension than in the other one [29]. Momentum accelerates the
algorithm by adding a fraction γ of the update vector in the previous time step to the
current update vector

vt = γvt−1 + η∇θJ(θ) (1.68)
θ = θ − vt (1.69)

30

1 Basics Optimization using Machine Learning

Figure 1.10: Schema of gradient descent using momentum, which leads to faster con-
vergence. [30]

γ is usually set to 0.9. In figure 1.7 the way how the gd optimizer works on a hyperspace
is shown.

1.2.2 Adam
Another much newer algorithm is the adaptive moment estimation (Adam) algorithm,
introduced in 2014 by Kingma and Lei Ba [31]. The pseudocode for adaptive moment
estimation (Adam) is shown in figure 1.11. Adam can interpret as a combination of
RMSprop, and stochastic gradient descent method [29]. RMSprop is another optimizer
that is heavily used in ML but will not be discussed here for more information [32]. On
a given time step (mostly simulated by the iterator), the gradient is calculated conven-
tionally using gd. Note again that in the case of this thesis, the automatic differentiation
(AD) is used. The algorithm gets updated through an exponential moving average of the
gradient (mt) as well as the squared gradient (vt) (where β1, β2 ∈ [0, 1)). Note that the
moments are biased towards zero. Consequently, it is necessary to correct the bias by
calculate, m̂t e.g., v̂t [31]. In Adam, it is crucial to carefully choose the learning rate α,
as the learning rate gets adjusted during the actual learning. [31]. The main advantage
of Adam is the much higher convergent performance compared to other optimization
methods, as shown in figure 1.12 [31].

The previous advantages combined make the Adam Optimizer one of the most famous
optimizers in modern deep learning.

31

1 Basics Optimization using Machine Learning

Figure 1.11: Adam pseudocode for stochastic optimization. Good default values for
machine learning problems are α = 0.001, β = 0.9, β2 = 0.999 and
ε = 10−8. All operations on vectors are done element-wise. βt

1, βt
2 de-

notes β1, β2 to the power of t. m0, vo initialize the mandatory momentum
vectors. t is the iteration number or time step.[31]

Figure 1.12: Performance of Adam, on multilayer neural networks on MNIST images
using stochastic dropout regularization. Compared to other optimizers.
AdaGrad, SGDNesterov, AdaDela are gd based methods. [31]

32

1 Basics Automatic differentiation

1.3 Automatic differentiation
In Machine Learning as well as in Density functional theory, it is crucial to use an
efficient way to calculate the required gradients.

Figure 1.13: Difference and similarities between different derivation approaches [33].
Manual differentiation is fast and exact, but not useable for an arbitrary
function. The automatic differentiation shows his major advantage. The
results are exact and faster to compute than using symbolic differentia-
tion. The numerical differentiation is fast, but does not yield an exact
result.

33

1 Basics Automatic differentiation

In general, there are multiple methods known which can be used to calculate deriva-
tives:

1. manually working out derivatives and coding them

2. numerical differentiation using finite difference approximations,

3. symbolic differentiation using expression manipulation in computer algebra (like
Mathematica)

4. automatic differentiation (AD)

The significant differences are shown in figure 1.13. Nevertheless, every method has its
advantages and disadvantages and specific use cases. The worst one is obvious method
1. as calculation by hand is notorious for human error. Also, it is incapable of numerous
functions or complex functions. But if used correctly, it can bring up fast and accu-
rate results. Method 2. the numerical differentiation is easy to implement, but highly
inaccurate in higher degrees of derivations (for more details [34]). However, numerical
differentiation has its advantages; it is straightforward to compute and fast. One exam-
ple where the numeric differentiation is used is by analyzing discrete time series, like in
this Thesis [35]. Method 3. the symbolic differentiation combines methods one and two
but mostly results in very complex and cryptic expressions. Which can lead to an ex-
pression swell (to contain an exact result, the number of needed calculation steps raises
drastically during the calculation). Note that there are also easy ways to handle the
expression swell in symbolic differentiation [36], which makes symbolic differentiation
also a powerful tool for science, which also shows the heavy use of Mathematica (which
uses symbolic differentiation).
The Ansatz used in this Thesis is the automatic differentiation (AD). The automatic
differentiation is also known for quite a while but was not used in machine learning [33].
Nowadays, there are multiple frameworks as PyTorch [25], xitorch [24] (which uses
PyTorch) or Jax [37] that are capable of handling automatic differentiation. The idea
of AD is similar to symbolic differentiation (but not equal!). The function

fexample(x1, x2) = ln(x1) + x1 x2 − sin(x2) (1.70)

will serve as an example [33]. By applying the chain rule, it is possible to split up the
function f(x1, x2) into multiple functions whose derivations are already well known and
implemented in every modern math code (like python math or NumPy). For example
d sin(x2)

dx2
= cos x2. Using this technique for each chain function yields a correct analytical

result for the derivation.
More general, constructing a function f : Rn → Rm using so-called intermediate variables
vi such that:

• variables vi−n = xi , i = 1, . . . , n are the input variables

• variables vi , i = 1, . . . , l are the working (intermediate) variables

34

1 Basics Automatic differentiation

Figure 1.14: Graph of the example f(x1, x2). the associated primal traces are shown
in 1.15 e.g. 1.16 [33].

• variables ym−i = vl−i , i = m − 1, . . . , 0 are output variables

The trace of the elementary operations shown in 1.14 [33].
It should be noted that AD uses various algorithms to control the expression which

comes out [33]. The symbolic differentiation can perform such algorithms in modern
software [36] as well. AD can be split up into two different cases actually to calculate
the derivative.

1.3.1 Forward Mode

Figure 1.15: Trace example of forward AD from function f(x1, x2) (eq. 1.70) at point
(x1, x2) = (2 , 5) and setting ẋ1 = 1 to compute ∂f(x1,x2)

∂x1
. The primal for-

ward evaluation is done on the left side. On the right side, the derivative
trace is shown.

The concept of the forward method is more straightforward and is shown in figure 1.15.
To compute f ′ within respect to x1, it is necessary to associate x1 with each vi which
the chain rule leads in:

v̇i = ∂vi

∂x1
(1.71)

35

1 Basics Automatic differentiation

Applying the chain rule to each operation lead to 5 more operations to finally calculate
the derivative through v̇5 = ∂f(x1,x2)

∂x1
. This generalizes to the Jacobian of a function

f : Rn → Rm. In this case, ẋi = 1 and zero else and represents the i-th unit vector. If
x = a is a specific input and, y the function:

ẏj = ∂yi

∂x1

∣∣∣∣∣
x=a

(1.72)

returns one column of the Jacobian matrix. The full Jacobian for n evaluations, given
by:

Jf r =


∂y1
∂x1

. . . ∂y1
∂xn...

∂ym

∂x1
. . . ∂ym

∂xn




r1
...

rn

 , where ẋ = r (1.73)

Furthermore, it can be calculated by just one forward pass.
If f : Rn → R, the result can be obtained directly by the partial derivatives.

∇f · r (1.74)

Note that the forward AD works good for f : R → Rm but it is not the preferred method
if f : Rn → Rm (n � m) [33]. The AD can generalized to dual numbers [33].

1.3.2 Reverse Mode

Figure 1.16: Trace example of backward AD from function f(x1, x2) (eq. 1.70) at point
(x1, x2) = (2 , 5) But the point on the right are calculated in reverse. Both
∂y
∂x1

and ∂y
∂x2

are calculated equal v5 = y = ∂y
∂y = 1. Again, the primal

forward trace is shown on the left side, and the derivative trace is done
on the left. [33]

36

1 Basics Automatic differentiation

Figure 1.17: Back propagation overview: (a)inputs xi generating activations yi. An
error E is calculated concerning the output y3. (b) the error is adjoint
backward, giving the gradient weights ∇ωiE = (∂E

∂ω1
, . . . , ∂E

∂ω6
).[33]

If f : Rn → Rm (n � m) the backpropagation as a valid method, steps in. Especially
this behavior is the standard problem of ML where there are many input parameters,
but a result is a real number. The backpropagation is done by complementing each vi

with an adjoint:
vi = ∂yi

∂vi
(1.75)

vi represents the sensitivity of yi concerning vi, which is displayed as E in fig. 1.17. In
reverse, AD can split up into two phases:

1. forward calculations of the original function to calculate vi

2. backward adjoins the vi form the outputs to the inputs.

Using example eq. 1.70 again to calculate the values given in tabular 1.16. The task
now is to calculate the contribution vi = ∂y

∂vi
. As shown in figure 1.14 of the variable v0

affect the output y throw, v2 e.g., v3.

∂y

∂v0
= ∂y

∂v2

∂v2
∂v0

+ ∂y

∂v3

∂v3
∂v0

or v0 = v2
∂v2
∂v0

+ v3
∂v3
∂v0

(1.76)

The main advantage of backward AD is the significantly less calculation effort for
significant inputs. Particular in the case of f : Rn → R as there is just one application of
reverse mode is made to calculate ∇f(x1, . . . , xn) instead of n in forward mode. Again,

37

1 Basics Automatic differentiation

especially in machine learning, this can be heavily used. The outputs are a scalar loss
function calculated by many input parameters. In general, for an arbitrary f : Rn → Rm

backwards performs better for m � n.

JT
f r =


∂y1
∂x1

. . . ∂ym

∂x1...
∂y1
∂xn

. . . ∂ym

∂xn




r1
...

rm

 , where y = r (1.77)

The disadvantages of backward AD are the increased storage requirement [33]. However,
reverse automatic differentiation is still a promising theory regarding speed and accuracy.
Furthermore, this also shows the evolution of machine learning since every larger popular
machine learning framework is on the way to properly integrate the AD as a standard
differentiation method.

38

2 Optimize Basis Set Projection between two basis sets

2 Optimize Basis Set

This chapter describes the actual process of optimizing a particular basis set. Therefore,
the previously explained foundations will be combined, and new definitions will be made.
In order to optimize a basis set, a second basis set is necessary. The first or initial basis
set is the initial guess for the fully differentiable machine learning framework. The
second basis serves as a reference basis set. Both basis sets will be labeled as “first”
and “second”, respectively, “initial” and “reference,” or just “small” and “large” basis
sets. The combination of two basis sets will be called “basis set variation” or “basis set
combination”. The basis set will be shortened to “basis” if it is evident that the basis
set is meant out of context. Therefore, the initial basis set must be smaller than the
reference. As the initial basis set has fewer parameters as input, the resulting ground
state energy will always be higher than the energy calculated throw the reference basis
set, which consequently always has more parameters. Besides the basis sets themselves
also, the chosen systems are essential. In the case of this Thesis, these systems will be
molecules. Every basis set variation is optimized concerning the selected molecule. This
might sound surprising, as the regular basis set only depends on an Atom. However, in
large chemical structures, different smaller molecule structures are included. Therefore, a
basis set optimized for these smaller structures can be used. By utilizing the approach,
the calculation time and mandatory calculation power can be reduced. So it makes
sense to optimize a basis set to a particular small molecule. It is necessary to define a
projection between two basis sets and a loss function for the ML algorithm.

2.1 Projection between two basis sets
The projection between both Basis Sets must be defined to optimize the initial basis.
By projecting the basis sets onto each other, the atomic orbitals will also be projected
as the basis set defines the atomic orbitals. According to, [38, 39, 40, 41] the projection
can be defined as:

|Ψ̃n〉 = P̂ |Ψn〉 (2.1)

Where the projection for the initial basis is defined as:

P̂ =
∑
µν

|φµ〉 S−1
µ ν 〈φν | =

∑
µν

|φµ〉 〈φµ|φν〉−1 〈φν | (2.2)

Ψn is the wave function of the n-th electron ins the system 1.1.6:

〈Ψn| =
∑
A

c∗
A n 〈φA| and |Ψn〉 =

∑
B

cB n |φB〉 (2.3)

39

2 Optimize Basis Set The loss functions

〈φA| and |φB〉 are the A’th and B’th GTO function of the large reference basis. C is the
coefficient Matrix. Now using the inner product, since it is invariant under basis change:

〈Ψn|Ψ̃m〉 = 〈Ψn| P̂ |Ψm〉 (2.4)
= 〈Ψn|

∑
µν

|φµ〉 S−1
µ ν 〈φν |Ψm〉 (2.5)

=
∑
A

∑
B

∑
µν

cA n 〈φA|φµ〉 S−1
µ ν 〈φν |φB〉 cB m (2.6)

=
∑
A

∑
B

∑
µν

cA n SAµ S−1
µ ν SνB cB m (2.7)

Now define this inner product for the whole system of molecules and combine the Therms
which either correspond to the small, e.g., the more extensive reference basis:

〈Ψ| P̂ |Ψ〉 = CT
1 S1 2 S−1

2 2 S2 1 C1 (2.8)

Equation 2.8 builds up the dissimilarity between two basis sets. The projection is a big
part of the loss function, which has to be specified for the Machine Learning algorithm.
One simple and at the same time apparent reason for this is that the output of the
projection is a matrix, not an actual number. Nevertheless, more things can be done to
enhance the loss function.

2.2 The loss functions
For this, Thesis, two different loss functions have been defined. Both are relatively
similar and consist of the same core operations. Accordingly, the projection defined in
equation 2.8 is multiplied with the occupied orbital matrix (θ). Each element of the
one-dimensional matrix presents the number of atoms in the orbital. The number of
electrons in the particular system will emerge by summation over this matrix. Building
the trace of the projection matrix and dividing it by the number of electrons, followed
by the multiplication with −1, the loss function is normalized to −1.

fnon weighted
loss = −

(
Tr(CT

1 S1 2 S−1
2 2 S2 1 C1)/

N∑
i

θi

)
(2.9)

In forecast of the following loss function, equation 2.9 is called non weighed, because
the second loss function used in this thesis is weighed by the molecular orbital energies ε.
ε is a one-dimensional matrix containing every orbital’s calculated ground state energy.
So equation 2.9 becomes:

fweighted
loss =

(
Tr(CT

1 S1 2 S−1
2 2 S2 1 C1)/

N∑
i

θi εi

)
(2.10)

The multiplication with −1 drops out since the orbital energies are consistently nega-
tive. In the following, the used loss function will be marked as “non weighed” if equation
2.9 is used and “weighed” if equation 2.10 is used.

40

2 Optimize Basis Set The optb module

2.3 The optb module
The optb module was created to run the optimization of a particular basis set for a
specific molecule[42]. Creating a fully functional python module is much simpler at a
certain point. The optb module is not published on PyPI, but can be installed using pip
by adding the prefix “git+” before the GitHub URL [43]. At this point, only the abilities
and limitations of the optb module will be discussed. An actual optimization run will
be explained in the next section. The using the pip installer, the module’s requirements
will also be installed in their correct version. The requirements are:

• Linux as operating system, which is mandatory for PySCF

• Python version 3.9

• PySCF [44, 45] to do the ab initio DFT calculations.

• Differentiable Quantum Chemistry (DQC) the Differentiable Quantum Chem-
istry module [46] to handle DFT related calculations inside the optimization, like
calculating the overlap matrix for the optimized basis set.

• basis set exchange (bse) [3] to provide the basis set data.

• Atomic Simulation Environment (ASE) the Atomic Simulation Environment
[47] which contains the data for the G2 database [17].

• xitorch a differentiable scientific computing library [24] to run the actual opti-
mization.

• PyTorch [25] to run xitorch.

• Tensor Board [48] a graphical interface to visualize the machine learning process
created by TensorFlow and then merged in PyTorch.

• NumPy [49], SciPy [50], pandas [51],plotly [52], Matplotlib [53] to do simple
math task outside the optimization as well as plotting and analyze the outcome
results.

As shown in the upper listing, PySCF and DQC handle every DFT related work, while
PyTorch Tensor Board and xitorch do all the Machine Learning related work. PySCF
uses the B3LYP potential to run an ab initio Kohn-Sham DFT calculation (can be
changed manually to every potential of Libxc [54]). The input for PySCF is the atomic
structure and the basis set; the remains will be automatically handled by optb. The
atomic structure can be contained by two built-in databases or as manual input. The
two database are the G2 database [17] and the W4-17 [55] database. Both possess
information about smaller molecules, like their charge, the total angular moment, and
the atomic structure. Therefore, the atomic structure is the position of each atom inside
the molecule in real space. Note that the G2 database is mainly used for test reasons
since it is the most used database in physics. The W4-17 is done with contemporary

41

2 Optimize Basis Set The optb module

molecular dynamic simulations, which leads to more authentic atomic structures. The
molecules which can be easily accessed are preselected. The avail molecules, which can
be found in Appendix 4, are uncharged, and the multiplicity (2S = 1 where S is the
total spin angular momentum) is equal to one. Deviating values would change the actual
DFT algorithm and would otherwise have to be adjusted. The preselection retains 119
out of the 148 molecules in the G2 database and 149 out of 183 molecules in the W4-17
database.
As training data, every basis variation can be used, for which bse provides the unique
basis sets. Only the previously discussed limitations have to be considered, like the size
of both basis sets 2.1.
Optimizing the picked basis set is done using the xitorch minimizer, which offers Adam
and gradient descent with momentum as the optimizer. It is also possible to control
the optimization by setting parameters like the minimizer’s learning rate or a maximal
number of iterations (also called epochs). For this thesis, a divergence control has been
added to xitorch, which lets the minimizer break up if the divergence is stable over a
long period. Other break-up conditions can be specified; a minimal iteration number
can be added, which blocks the check-up of the break-up prerequisites for the designated
iteration number. In this manner, it is ensured that the minimizer can learn more freely
at the beginning. Everything inside the minimizer has to be fully differentiable PyTorch
tensors. Accordingly, DQC handles the operations inside the loss function as computing
the overlap matrix in every iteration. The overlap matrix and, thus, the projection
has to be computed since the initial basis changes in each learning epoch 2.1. During
the optimization, the Tensor Board framework can plot the loss function and evaluate
the optimization in real time. The optimizer’s output is an optimized basis set, which is
stored in a “.json” file and can be used for further DFT calculations from now on. Besides
that, it is doable to output a misc file where all relevant information related to the
Machine Learning (ML) process is stowed. Using python build-ins and Pandas, a folder
structure can be created to handle the output, making sense if multiple optimization
processes are running.
To sum up, what are the abilities and limitations of the optb module?
Initiating with the abilities, optimizing the majority of Gaussian basis sets for a specified
molecule should be possible. Assuming that an initial basis set does exist for every
atom in the molecule and the molecule itself does not carry a charge or multiplicity
other than one. Two different optimizers to solve the minimization problem are open.
Simultaneously, observing the learning progress and creating a folder structure to store
large amounts of data is possible.
On the other hand, there exist a couple of restrictions. The most obvious limitation is
that optimizing the basis set for a specific Atom independent of a molecule’s presence is
impossible. It is also not possible to optimize an arbitrary molecule. It is also impossible
to use other modern optimizers besides the two implemented ones, like AdaGrad or
RMSProp 1.2, and implementing a new optimizer is not easy. Further, no method was
implemented that automatically searches for the correct learning rate. The following
section shows how a basis set gets optimized for a specific molecule for the H2 molecule.

42

2 Optimize Basis Set Optimization example of a basis set for molecule

2.4 Optimization example of a basis set for molecule
After illustrating the principles of the optb module, the essential use of the code itself will
be explained briefly. The presented example looks quite similar to a Jupyter notebook,
and indeed there is an executable example, which can be discovered in the optb GitHub
[43].

Before using the code, a python 3.9 environment must be set up to run the opt module.
If this were done, the optb module could be installed by using:
pip install git+https://github.com/Jaikinator/OptBasisSets
For this example, the STO-3G basis set should be optimized for the H2 molecule. The
cc-pvtz basis set, therefore, serves as a reference.
The first step is importing all relevant functions accessible by simply importing the
OPTBASIS class. The molecules which can be optimized have to satisfy two conditions.
The molecule’s charge has to be zero, and the multiplicity has to be one. In addition,
the two lists of avail molecules from the G2 and the W4-17 database will be added (a
list of all molecules can be found in the Appendix 4).
In [1]: “

import relevant class object”:
from optb. optimize_basis import OPTBASIS
" import all preselected available molecules : "
from optb.data. preselected_avdata import elw417 , elg2

The second step is to set up all parameters relevant to the ab initio DFT calculation.
In [2]: molecule = "h2" # molecule name

init_basis = "STO -3G" # initial basis set for the optimization
ref_basis = "cc -pvtz" # reference basis set for the optimization

The H2 molecule is part of the W4-17 database and can be called by its chemical name
(the same molecule from the G2 database is referred to as” H2”). The basis sets can be
called natively by their name since basis set exchange and PySCF and DQC can handle
these types of inputs. Every basis set available on https://www.basissetexchange.org
can be used for optimization. The basis sets take their name as input. The initial basis
set has to be less precise than the reference one.
In addition to the DFT-related parameter, the machine learning-related parameter has
to be defined. The only mandatory parameter, therefore, is the learning rate, which
has no default value. The chosen loss function is the non-weighed loss function, as the
values are normalized to a minimal value of −1. The maximal iteration number has
been set to a usable amount for this example. The maximal iteration value must be
multiple magnitudes higher in an actual optimization process to achieve decent results.
The same applies to the optimizer. By default, Adam will be used.

43

https://github.com/Jaikinator/OptBasisSets
https://www.basissetexchange.org

2 Optimize Basis Set Optimization example of a basis set for molecule

In [3]: lr = 2e-4 # selected learning rate

weighed = False # using the non - weighed loss function
maxiter = 50 # maximal number of iterations
miniter = int(maxiter /10) # minimal number of iteration
method = "Adam" # optimizer method which will used

The next step is applying these parameters to the OPTBASIS class.
In [4]: opt = OPTBASIS (init_basis , ref_basis , molecule , lr ,

maxiter = maxiter , miniter = miniter ,
method = method , weighed = weighed)

Out[4]: OPTBASIS (basis=STO -3G, basis_ref =cc -pvtz , molecule =h2 ,
step =0.0002 , maxiter =50, miniter =5, method =Adam ,
weighed = False , diverge =-1.0, maxdivattempts =50,
output_path =None , get_misc =True , mol_kwargs ={},
minimize_kwargs ={}, out_kwargs ={})

For exemplary purposes, the class object is equipped with a representor, which can
ensure that everything is set up correctly. The representor also prints the other optional
parameters and their default values, but these will not discuss here. Further information
can be found in the documentation inside the code [43].

Now, the code is already ready to run the optimization.
In [5]: opt. optimize_basis (save_out = False) # run the optimization

Out[5]: overwrite output file: ./ output /scf_cc - pvtz_h2 .out
overwrite output file: ./ output /scf_STO -3 G_h2.out

start optimization of STO -3G Basis for the Molecule h2
and learning -rate 0.0002

The initial guess is:
tensor ([3.4253 , 0.6239 , 0.1689 , 0.9817 , 0.9495 , 0.2959] ,
dtype=torch. float64)

#: f | dx , df
1: -9.928184e -01 | 4.899e-04, 9.928e -01

minimal number of iterations is reached now
beginning to check for divergence

10: -9.934040e -01 | 4.889e-04, 6.222e -05
20: -9.939863e -01 | 4.861e-04, 5.497e -05
30: -9.944970e -01 | 4.820e-04, 4.793e -05
40: -9.949399e -01 | 4.770e-04, 4.141e -05
50: -9.953213e -01 | 4.716e-04, 3.556e -05

output file: .// scf_optB_h2_014 .out
/nfs/data -013/ jaikinator / anaconda3 /envs/ OptBasis /lib/ python3 .9
/site - packages / xitorch / _impls / optimize / minimizer .py :359:
UserWarning : The minimizer does not converge after 49
iterations .
Best |dx |=4.7160e-04, |df |=3.5562e-05, f= -9.9532e -01

warnings .warn(msg)

44

2 Optimize Basis Set Optimization example of a basis set for molecule

Out[5]: opt basis: {’H’: [[0, [3.4154923778335884 , 0.18382277260481714] ,
[0.6337203965479148 , 0.6161942841978492] , [0.17803968905593073 ,
0.4866653691497605]]]}

initial energy : -0.9248530539549455
ref energy : -0.963763850056754
opt energy : -0.9328197564857001

Now the optimization is done. As expected, there is no convergence after just 50 itera-
tions, which explains the warning. Three output files for the ab initio DFT calculations
were created by PCF. These files contain all information about the DFT calculation
itself.

1. scf_cc-pvtz_h2.out DFT calculation using the reference basis set

2. scf_STO-3G_h2.out DFT calculation using the initial basis set

3. scf_optB_h2_001.out DFT calculation using the optimized basis set

Before the run starts, all relevant pieces of information for the learning and the ini-
tial parameters are displayed again. Then the run starts and prints updates every ten
iterations. After the 5.th iteration, the optimizer allows breaking up due to divergence,
which can save time in a more extended optimization. Therefore, optb ensures that
the divergence is not just a temporary phenomenon and continues over a long period
of iterations. The displayed learning parameters are the value of the loss function. If
the value of the loss function gets closer to minus one, this can be interpreted as an
improvement. df describes the difference between the previous iteration’s loss function
value and the loss function’s current value. $ df = f_i - f_{i-1}$ dx, on the other hand,
is the difference in the norm of all input parameters of the previous and the current
iteration. After all 50 iterations were done, and the optimized basis set values were
printed. Here it is good to see that the number of parameters does not change during
the optimization. Afterward, the difference in energies is displayed:

• The energy using the initial basis (STO-3G) ≈ -0.925 Hartree

• The energy using the optimized basis ≈ -0.934 Hartree

• The energy using the reference basis (cc-pvtz) ≈ -0.964 Hartree

This shows that already, after just 50 iterations, there is a significant improvement on
the STO-3G basis set. Which now can be replicated for other molecules and other basis
sets. In an actual optimization process, it will be helpful to use a much higher maximal
iteration number (or the default of 10e6) and try different learning rates. Since the input
parameters of the basis sets and the molecule were just passed to the optimizer by their
names (as they are used in science), at this point, they will be displayed as the optimizer
uses them internally:

45

2 Optimize Basis Set Optimization example of a basis set for molecule

In [6]: opt. atomstruc # atomic structure of the H2 molecule

Out[6]: list ([’H’, 0.0, 0.0, 0.37095] , [’H’, 0.0, 0.0, -0.37095])

In [7]: opt. init_basis # values of the STO -3G basis set

Out[7]: dict(’H’: [[0,
[3.425250914 , 0.1543289673] ,
[0.6239137298 , 0.5353281423] ,
[0.168855404 , 0.4446345422]]])

In [8]: opt. ref_basis # values of the cc -pvtz basis set

Out[8]: dict(’H’: [[0,
[33.87 , 0.0, 0.006068 , 0.0] ,
[5.095 , 0.0, 0.045308 , 0.0] ,
[1.159 , 0.0, 0.202822 , 0.0] ,
[0.3258 , 1.0, 0.503903 , 0.0] ,
[0.1027 , 0.0, 0.383421 , 1.0]] ,
[1, [1.407 , 1.0, 0.0] , [0.388 , 0.0, 1.0]] ,
[2, [1.057 , 1.0]]])

Therefore, it is possible to input just the atomic structure of a molecule. The same
behavior does not apply as quickly to the basis sets; however, it is possible to create
an individual basis set. Therefore create an NWChem file and designate it inside the
modules basis set folder. At this point, everyone with at least a bit of knowledge about
basis sets and molecules should be able to optimize a basis set for a specific molecule.
Therefore, we want to leave the part about the optb module and continue with the
evaluation results, which optb can output for different molecules and different basis
sets.

46

3 Evaluation

3 Evaluation

After finalizing the optb module, it was time to use it on the built-in molecules for
optimizing some basis sets. The result of these optimizations will be discussed from now
on. For this thesis, all avail molecules of the W4 -17 and the G2 database are optimized
for various basis set variations. The G2 dataset was mainly used for testing, so most
results lie on the W4-17 database. We are starting from the physical and chemical point
of view, most significant part. How much does enhance an optimized basis set actual
DFT calculation? In the second part, we want to assess the Machine Learning procedure.
Which delivers the actual capabilities of the optb module in real applications.
In total, 26098 optimizations were done. All avail molecules (which again can be found
in the Appendix 4) were trained for the following basis combinations:

initial basis reference basis
STO-3G 3-21G
STO-3G cc-pVTZ
3-21G cc-pVTZ

cc-pVDZ cc-pVTZ
cc-pVDZ cc-pVQZ

cc-pCVDZ cc-pCVTZ
cc-pVDZ aug-pc-2

aug-cc-pVDZ aug-pc-2

Table 3.1: Different basis variations for which the molecules have been trained.

These different basis sets were selected due to their different complexities. The STO-
3G basis is part of the STO-nG basis set [2]. It is a minimal basis set where Slater-type-
orbitals (STO) is approximated by three primitive Gaussian per orbital.
The 3-21G basis is the famous Pople basis [56], which is a split-valence double-zeta basis
set.
The cc-pVNZ are correlation-consistent polarized basis sets done by Thom H. Dunning,
Jr. [57]. The V stands for "valence only", and NZ is the number of Zeta functions in
the basis set. The aug-cc-pVDZ are extended augmented Dunning basis sets.
The aug-pc-2 was invented by Frank Jensen in 2002 [58, 59, 60, 61]. It is an augmented
polarization consistent with, in this case, two angular momentum functions.
The selected basis sets should ensure that the optb module can optimize simple basis
sets like STO-3G and handle cutting-edge basis sets, which have additional functions
like diffuse or polarisation functions. In addition, is it possible to remove the amount of
the necessary ζ- functions for specific molecules or basis sets?

47

3 Evaluation Select Optimized basis sets

The optimization for each molecule and each basis set combinations were done with
both methods (Adam and gradient descent). Since no automated learning rate search
was implemented, various learning rates were chosen. The learning rates were 2 × 10−1,
2×10−2, 2×10−3, 2×10−4, 2×10−5, 2×10−6, 2×10−7, 2×10−8, 2×10−9, 2×10−10. As a
maximal number of iteration for the optimization, 106 were used. The maximal number
of iterations was chosen empirically, as most optimizations were almost converged or
diverged at this point. For all runs, a minimal number of iterations were set to 104 Of
course, not all runs lead to a well-optimized basis set; therefore, the results must be
selected.

3.1 Select Optimized basis sets
In ML, the waste majority of the produced data is usually not serviceable. Figure 3.1
shows a small part of the raw output data to illustrate how an actual output looks.
Since miscellany learning rates were used, most training will diverge, and merely a
few appropriate learning rates will obtain good results. Accordingly, all results were
dropped where the best iteration is zeroth (or in the single-digits) iteration. Here the
optimization diverges from the origin. Occasionally the learning does converge, but to
an unreasonable result for the energy of the optimized basis set, which can happen if
the optimizer diverges over a long period but finds a local minimum close to the current
diverged loss function value. The outcoming basis sets were dropped if the optimized
energy was not in the initial and reference energy range. Mention that this behavior was
occasional and only discovered for distinct molecules. But not only the optimization
can fail to converge, PySCF [44] can experience the same problem during the DFT
calculation. Especially for larger basis sets, this can be an issue since the calculated
results are over-determined and linear depend. All the previous problems were solved
similarly for the results by dropping every optimized basis set if something went wrong,
since we know why a particular behavior has appeared. While the data is already
proceeding, the best basis sets for every molecule and reference were stored.

48

3 Evaluation About the successful optimizations

Figure 3.1: Example for the raw output data out. The first two columns are the
molecule’s name and the file number in the folder structure. Then the
initial energy, the reference energy (textitref_energy), as well as the en-
ergy using the optimized basis opt_energy, are listed. After this, the ML
related parameters are listed. The learning rate column is self-speaking.
On the right, the maxiter column gives the number of maximal possible
iterations possible in the training run. miniter, on the other hand, the
minimal iterations a training has to do before checking on set termination
conditions. The method is the optimizer, which was used for the training.
The columns best_f, best_df, best_dxnorm are the best value of the loss
function. In this case, the non-weighed loss function. df is the difference
between the current loss function value and the value in the previous epoch.
The dxnorm is the difference between the norms of the current parameter
values and the norm of the parameter values in the previous epoch. best_i,
max_i are the maximum number of iterations done during the training,
and best_i marks the epoch on which the best minima were found. f_rtol
is a termination condition based on the output’s relative tolerance. basis
and ref_basis are the names of the initial, the reference basis set. A larger
version of this picture can be found in the Appendix 4, 4.3

3.2 About the successful optimizations
The next step is to make the data better comparable between all outcomes. Since ev-
ery molecule has a different number of Atoms in the system, the total energies are not
comparable between the molecules. Therefore, the ground state energy is displayed in
Hartree per Atom. The energy dependencies due to the number of atoms in the molecule
were removed this way. In addition, the absolute difference between the reference en-
ergy calculated with the reference basis set and the energy using the initial basis set
was determined in Hartree per Atom. In addition, the absolute difference between the
reference and the energy using the optimized basis set was computed. The evaluation
will cover both loss functions, since optb [43] has implemented two.

49

3 Evaluation Non-weighted loss function optimization

3.3 Non-weighted loss function optimization
We are beginning with the non-weighed loss function. As a reminder, this means the
minimum value of the loss function can never be smaller than −1. However, in the
ideal case, it would be −1 as the smaller basis leads to the exact same energy as the
larger basis. The calculations were done without termination conditions and with a
specific termination condition besides the divergence control. The termination condition
was the relative error of the projection function between two iterations. It was set to
10−16. Unfortunately, xitorch used other termination conditions that bring the learning
to break up by a total error of 10−8, which was removed in later calculations without
any termination conditions.

Figure 3.2: In blue, the energy difference between the energy using the reference
(larger) basis set and the energy calculated throw the optimized ba-
sis. In red, the energy difference between the energy using the refer-
ence (larger) basis set and the energy using the initial (smaller) basis set.
∆E = Eref − Eopt The difference between the red and the blue bar for the
given basis variation on the x-Axis displays the improvement done by the
learning.

In figure 3.2, the energy differences regarding the reference energy are displayed for
an average over all molecules and for different basis variations. Figure 3.3 shows energy
difference concerning the initial basis set of both optimized and reference basis sets. An
important fact that can be extracted from both figures is that there is undoubtedly an
improvement in the ground state energy by using the optimized basis set. The gain
depends on the chosen basis variations. While the highest energy improvements were
achieved using the STO-3G basis set, it does not mean that this is the best optimization.

50

3 Evaluation Non-weighted loss function optimization

Figure 3.3: Average Energy difference between the energy using the optimized basis
set and the initial energy in Hartree per Atom, in blue. ∆E = Eopt − Einit

In red is the energy difference between the reference and the initial energy.
The y-axis is displayed logarithmically.

The STO-3G basis is a small basis set, so the initial energy difference regarding the
reference is quite significant from the beginning. Enhance this initial energy discrepancy
will be by its total value relatively high. However, the relative improvement related
to the initial energy difference is not as high for the STO-3G basis as other basis set
variations. The relative improvement is defined as:

∆E[%] = 100
Eref − Einit

(Eoptb − Einit) (3.1)

Nevertheless, the proposed STO-3G basis set is far superior to the other variations
regarding the overall energy improvement. While at the same time, the total energy
difference between the initial basis set and the reference basis set is much higher. If the
energy difference between the initial and the reference basis is already relatively small,
then it is questionable whether it is worth optimizing. In this case, these results can be
considered proof of concept. This proof concludes that it is possible to advance large
basis sets further. It should be reiterated that the calculated energy differences in Figures
3.3 and 3.2 are based on the average over more than a hundred different molecules. Each
molecule has different chemical behaviors and different atoms in it. Remember that the
basis set functions depend on individual atoms, even if the basis set type is the same.
Another thing to remark is that heavier atoms have more energy per atom than lighter
ones. The displayed energy difference for the average overall molecules is consequently
shifted towards the molecules that consist of heavier atoms. A heavier atom’s basis set
consists of more functions than the basis set of a lighter atom. Therefore, they are more

51

3 Evaluation Non-weighted loss function optimization

challenging to optimize (see section 1.1.7). This being said, it makes sense to display
the optimization success in dependence of the molecule or, more precisely, the number
of atoms inside the molecule.

Figure 3.4: Relative improvement of an optimization 100
Eref.−init

∗ Eoptb−init depends on
the number of Atoms in a certain molecule. Displayed for different basis
variations. A more detailed version of this figure can be found in the
Appendix 4.1.

Accordingly, figure 3.4 shows the relative improvement for the best result (regarding
all optimizations with atom structure and basis set variation) in dependency of the
number of Atoms in the molecule. To mention again, the number of atoms in a molecule
only indirectly relates to the number of electrons. The number of electrons inside an
Atom is not considered in this plot. The H2 molecule has the best relative improvement,
which can be found in the upper left of the plot. However, the optimization was also
going well for some molecules with more atoms. Unlikely, the overall trend shows that
the optimization success is lower for larger molecules, which was anticipated since larger
molecules are usually more complex than smaller molecules. We want to go into more
detail here, utilizing the principles of how basis sets are constructed. A larger basis set
can represent the same physical property as a smaller one by increasing the number of the
ζ functions, 1.1.7 for every molecular orbital. If this is the circumstance, the task of the
optimizer is to mimic the contacted Gaussian of a higher degree using fewer functions,
which can be relatively straightforward or highly complicated. Imagine utilizing one
function instead of three functions to describe an s-orbital; this will be relatively easy.
However, describing a p-orbital with one instead of three functions is nearly impossible.
The consequence is that the optimization gets significantly more complex with every
additional orbital. The more extensive basis sets do not only add extra ζ-functions to

52

3 Evaluation Non-weighted loss function optimization

their collection. Furthermore, they add additional functions to include more physical
effects. Examples of these functions are polarization or diffuse functions. Both functions
are localized in an additional orbital. Now the optimizer’s task is to use fewer functions
(from the small basis) to imitate more functions for the same orbital and to describe
additional orbitals (can be one or more) without changing the number of parameters
given by the initial basis set. For example, complicated molecules that profit from
polarization functions are significantly more complex to optimize than molecules that
do not need these functions. The optimizer indirectly gets the information over the
actual number of molecular orbitals from the occupied orbital matrix, which is part of
the loss function and an output of the DFT calculation. All functions of the basis set
will still be optimized, but for smaller molecules, most functions are just not as relevant
as for larger systems and, therefore, easier to optimize. In figure 3.4 one molecule
stands out at the five atoms mark this molecule is CH4. A plot with a hoverable plot
of figure 3.4 can be found at GitHub [43]. So four out of five atoms are hydrogens,
from which it is already known that it can be optimized quite well since the required
number of functions to describe all necessary orbitals is relatively tiny. In addition,
the peak is caused by the basis variation of aug-cc-pCDZ and aug-pc-2, which both
describe the same physical behaviors by default. Therefore, it makes sense that the
relative improvement is relatively high since the only task is to fit the same amount of
parameters onto each other. The success of the basis variation of cc-pvdz and cc-pvtz
can also be attributed to the difference between the two basis sets, which is only one
ζ-function per orbital. The previously explained behaviors also clarify why most results
are between zero and ten percent of improvement. It is difficult to significantly improve
smaller basis sets if the molecule requires all the extra functions provided by the larger
basis sets. In comparison, it is like fitting a quadratic function with a linear one. It is
possible to get a decent fit in a specific small area, but if the area extends, the fit will
fail.
Now focus on the best-optimized molecule of all optimized molecules, the H2 molecule.

In figure 3.5 the different Energies are shown for the H2 molecule. Here the progress is
clear to witness for every basis set variation. The reason that, in particular, this molecule
can be optimized so well is due to its simplicity. Only s-orbitals are necessary to describe,
H2 therefore, the most additional functions provided by more extensive basis sets do not
significantly enhance the DFT result. Even the solution to the Schrödinger equation
is known for the hydrogen molecule. Therefore, the ground state energy depends less
on the actual number of functions than the parameters of used functions. To conclude,
the optimizer can improve the most basis set using the non-weighted loss function. The
improvement is noticeable for specific molecules, such as H2 or CH4. The progress would
be relatively minor for most other molecules and would not be helpful in applications
outside the optimization process. The weighted loss function was created to improve
further the optimization process, which will now be evaluated.

53

3 Evaluation Evaluation of the weighted optimization

Figure 3.5: Energies of the H2 for different basis set variations. The initial basis (blue),
the reference basis (red), and the optimized basis (green).

3.4 Evaluation of the weighted optimization
Now the weight loss function will be discussed. Since the results are from the same
type (for example, energy differences), the display graph looks familiar. As explained in
Section 2.2, the weighed loss function considers the molecular orbital energies. The loss
function should prefer the outer atomic orbitals because these are the orbitals that are
more relevant for chemical interactions. The projection is no longer normalized to one,
which is a disadvantage.

From figures 3.6 and 3.7 the relevant information can be extracted again. Unfortu-
nately, the results do not show the intended improvement. All molecules were optimized
for the basis variations shown in Figure 3.6. The total and the relative improvements
are similar to the non-weighed loss function. Regardless, the weighted loss function has
one major disadvantage: it results in a much higher failure rate than the non-weighted
loss function.

54

3 Evaluation Evaluation of the weighted optimization

Figure 3.6: In blue, the energy difference between the energy using the reference
(larger) basis set and the energy calculated throw the optimized ba-
sis. In red, the energy difference between the energy using the refer-
ence (larger) basis set and the energy using the initial (smaller) basis set.
∆E = Eref − Eopt The difference between the red and the blue bar for the
given basis variation on the x-Axis displays the improvement done by the
learning.

Figure 3.8: Energy’s of the initial basis (blue), the reference basis (red), as well as the
optimized basis (green) for the H2 molecule.

55

3 Evaluation Evaluation of the weighted optimization

Figure 3.7: Absolute Energy difference between the basis set using the optimized basis
set and the initial energy using the small basis set, in Hartree per Atom,
in blue. The energy difference between the reference and the initial basis
set is red. ∆E = Eopt − Einit The y-axis is displayed logarithmically.

For example, for the H2 molecule, only the one variation shown in the figure 3.8 were
possible. All other results for H2 the molecule were discarded because they diverged
from the beginning. The same behavior was discovered not only in the H2 molecule, but
was experienced for the vast majority of other molecules.

We want to look at Figure 3.9, which shows there are still decent results for different
molecules, but these can be mainly attributed to the basis variation of cc-pvdz and cc-
pvtz. It is known that these are pretty similar, only differing in one ζ-function. In the
case of the weight loss function, the focus of the optimization should move to the outer
orbitals, which are known to be attributed to diffuse or polarization functions in larger
basis sets. Since these functions are not defined in smaller basis sets, optimizing them
will be even more complex or nearly impossible. However, if an optimization finishes
successfully, the results should be better since the relevant functions will be considered.
Comparing the improvements achieved by the two different loss functions contradicts this
assumption. The choice of the loss function depends on the evaluation of the machine
learning process that will take place in the next part.

56

3 Evaluation The machine learning

Figure 3.9: Relative improvement of an optimization 100
Eref.−init

∗ Eoptb−init depends on
the number of Atoms in a certain molecule. Displayed for the optimized
basis variations. A more detailed version of this figure can be found in the
Appendix 4.2.

3.5 The machine learning
After evaluating the relevant results from a physics point of view now, the machine
learning process will be discussed in more detail. Therefore, the different optimizers will
be discussed, and their dependency on the learning rate will be reviewed. The Machine
Learning process should also be evaluated concerning both used loss functions.

3.5.1 Comparison of Adam and gradient descent
The best result was chosen for every molecule and basis set variation, which leads to
362 optimized basis sets for the W4-17 using the non-weighed loss function. Regarding
tabular 3.2, 111 optimized basis sets were provided by the gradient descent optimizer
and the remaining 251 by the Adam optimizer. The success rate gives the percentage
for the number of results, leading to an improved basis for all results.

57

3 Evaluation The machine learning

w417 G2
total gradient descent results 3108 /
total Adam results 9310 9800
usable gradient descent results 395 /
usable Adam results 2133 1286
Success rate gradient descent 12.71 % /
Success rate Adam 22.911% 13.22%
Number of gradient descent results in the best results 111 /
Number of gradient Adam results in the best results 251 256
Success rate of gradient descent in the best results 30.66% /
Success rate of Adam in the best results 69.34% 100%

Table 3.2: Data created by optimizers and their success rate using the non-weighed loss
function. The “best result” is the set of the best learning for each molecule
and basis variation.

The “best result” is the set of parameters with the best optimization outcome for each
molecule and basis variation. The success rate favors the Adam optimizer, which makes
sense since Adam is the more powerful optimizer invented in 2015. Nevertheless, the
gradient descent optimizer is also capable of getting good results. Even though the total
number of calculations done with the gradient descent optimizer is less than using Adam,
more than 30 percent of the best result leads to gd. Only the Adam optimizers were
used for the weighted loss function due to his better performance. Therefore, comparing
the two optimizers for the weighed loss function is impossible. Nevertheless, there is no
doubt that Adam is generally the more powerful optimizer. However, optimizing the
basis sets is also possible using older, much simpler methods like gradient descent.

3.5.2 Learning rate dependency
As familiar with the basics of Adam, the optimizer heavily depends on the chosen learning
rate. Therefore, every optimization collection (one molecule multiple basis set variations)
was optimized with multiple learning rates. The different learning rates are shown in
their corresponding tabular, which will be discussed now. The results for the G2 database
can be found in the Appendix, since they were done to proof of concept. Here, only the
results for the W4-17 databases will be examined.

58

3 Evaluation The machine learning

learning rate lr counts unfiltered lr counts filtered lr counts in best results
2e-09 2052 1
2e-10 2018 1
2e-08 1697 9 1.0
2e-07 1605 94 22.0
2e-06 1548 292 73.0
2e-05 1359 328 93.0
0.0002 1139 348 113.0
0.002 1000 169 60.0

Table 3.3: dependency of the learning rate for both Adam and gradient descent com-
bined. The counts are the total number of the specific results. The filter
drops out all wrong learning results. The data is calculated to throw the
non-weighted data.

In table 3.3, the results combined for both optimizers are displayed for the non-weighed
loss function. The optimizers prefer a larger learning rate between 0, 002 and 2×10−6. It
ends with a value of 0, 002 because previous results in the program setup diverged every
time, so optimizing the basis set with more effective learning rates does not make sense.
Split this up between the gradient descent optimizer and the Adam optimizer, leads to
the tabular 3.4 and 3.5. Here one of the weak points of Adam appears. According to the
basics, the Adam optimizer is sensitive to the carefully chosen learning rate. However,
the gradient descent optimizer also gets results more likely using more effective learning
rates.

learning rate lr counts adam unfiltered lr counts filtered lr counts in best results
2e-09 1482
2e-10 1462
2e-08 1268 2.0 1.0
2e-07 1219 28.0 5.0
2e-06 1153 153.0 30.0
2e-05 1018 222.0 60.0
0.0002 890 286.0 100.0
0.002 818 156.0 55.0

Table 3.4: dependency of the learning rate for Adam. The counts are the total number
of the specific results. The filter drops out all wrong learning results. The
data is calculated to throw the non-weighted data.

59

3 Evaluation The machine learning

learning rate lr counts gd unfiltered lr counts filtered lr counts in best results
2e-09 570 1
2e-10 556 1
2e-08 429 7
2e-06 395 139 43.0
2e-07 386 66 17.0
2e-05 341 106 33.0
0.0002 249 62 13.0
0.002 182 13 5.0

Table 3.5: dependency of the learning rate for gradient descent. The counts are the
total number of the specific results. The filter drops out all wrong learning
results. The data is calculated to throw the non-weighed data.

For comparison, tabular 3.6 showing the result using the weighed loss function. This
optimization was just run with Adam due to the runtime efficiency. As expected, the
results look similar to the non-weighed results, as the initial parameters and reference
data are equal. Higher learning rates seem to increase the chance of failure; in contrast,
lower learning rates do not improve significantly. Which also makes sense, remembering
figure 1.9 from section 1.2. Lower learning rates are less likely to diverge, but there are
also not capable of finding deeper minima in the hyperspace.

learning rate lr counts adam unfiltered lr counts filtered lr counts in best results
0.002 440 86 46.0
0.0002 440 173 53.0
2e-05 439 182 39.0
2e-06 432 183 38.0
2e-07 410 213 56.0
2e-08 388 211 8.0
2e-09 358 207 3.0
2e-10 339 205
2e-11 321 205
2e-12 310 204

Table 3.6: dependency of the learning rate for Adam. The counts are the total number
of the specific results. The filter drops out all wrong learning results. The
data is calculated to throw the non-weighted data.

After discussing the optimizer and its learning rates now, let us take a closer look at
the actual learning of a specific case. Therefore, the leanings from table 3.10 will be
used again. Recognize that the H2 was the molecule where the best gain overall was
accomplished. The H2 molecule here was computed using the non-weighed loss function,
which can be noticed on the best_f column, which is close to one.

60

3 Evaluation The machine learning

Figure 3.10: Tabular with the results used in the plots done by the tensor board.

The figure 3.10 represents the results of the learning displayed in figure 3.11. Gray
has the lowest learning rate of 2e − 8. Here the previously mentioned problem gets
more precise. The optimizer can find better parameters for the initial guess. However,
as the step size in the hyperspace is limited, the optimizer never finds the actual deep
minima as the optimizer with a more significant learning rate. The green function show
learning with a learning rate of 2e − 7 and the pink curve with a learning rate of 2e − 6.
Both again mirror the results of previous discussions about the learning rates. Using
the learning rates is getting a significant improvement for the initial parameters. Both
get similar results, but the lower learning rate needs a much longer time to get the best
result. After searching for the best results and still doing so, the optimizer tries to
find other minima. However, it is no longer possible; the trace of the projection and,
therefore, the value of the loss function gets higher again and starts to diverge, which is
called overfitting. This behavior is a common problem of ML. Then the optimizer tries
to fit some parameters better and better by ignoring other input parameters. Therefore,
the learning for the specific parameter gets better in every epoch while the value of the
learning rate diverges. Going to an even larger learning rate, the loss function’s value
immediately diverges as it "over jumps" all the minima.

Figure 3.11: Loss of function due to the learnings from figure 3.10.

Comparing the learning rates used for the H2 molecule with the general learning rate
dependency might be surprising, as they are pretty small compared to the average results
from tabular 3.4. Since the initial value of the loss function is already close to one (for
the non-weighed loss function), it makes sense that a lower learning rate will be more

61

3 Evaluation The machine learning

effective because a higher learning rate will quickly begin to overfit the loss function.
Now it is time to conclude the ML topic. Since the non-weighted loss function brings
up more valuable results, this will be the preferred one. For the comparison between
Adam and gd, the clear favorite is Adam for the much faster convergence behavior and
that they bring up more of the best results measured. Selecting the right learning rat
is not as easy as specifying a specific one, but higher learning rates between 0, 002 and
2 × 10−6 pretend to be performing better than smaller or larger ones. However, every
new input data set must be re-evaluated in this case. The essential outcome of this
valuation regarding the ML process is that the framework works and can be used to
improve basis sets for particular basis sets. As the evaluation is finished, it is time to do
a Résumé and provide an outlook from the current point.

62

4 Résumé and Outlook

4 Résumé and Outlook

Now it is time to look back and evaluate what has been done and what can be done with
this Thesis’s outcome. As the results show, optimizing basis sets in principle is possible.
Moreover, for elementary molecules like H2, the optimized basis set is excellent compared
to the initial basis set. For more complex molecules, the improvement is less significant
but measurable. If we look at the basis set exchange website [3] we will expire dozens of
different basis sets with a variety of complexity for every possible atom. They all have
a significant adaptation that can be used outside the specific molecule. Which led to a
clear result: optimizing basis sets for a specific molecule is possible. Nevertheless, since
the created basis sets are limited in their use case the vast majority of the time, it just
does not make sense to optimize a basis set to a specific molecule to use later in a larger
system. That may sound not very pleasant, but there is hope. Over the last decades,
all the basis sets used as initial and reference were very well-adjusted. So even a minor
improvement can be evaluated as success. Since there is no actual application for this by
the direct use of the out coming basis sets, this learning may be used in other ways. The
optimization Process can be implemented in a neuronal network. The neuronal network
can be trained using the optb module for way more basis set variations and molecules
than it was done for this Thesis. Then the neuronal network can use this information to
create a new basis set for standalone an atom without binding on a particular molecule.
In the best case, the trained neural network will be capable of outputting a specific basis
set depending on the input. For example, if the user wants a basis set that includes
diffuse functions, a different amount of ζ functions, or polarization functions. This
way, getting the best basis set for the specific system within seconds would be possible.
Appropriately, this can speed up DFT calculations while simultaneously achieving better
results. Especially for heavier atoms, this would be considerable furtherance, since these
basis sets are usually quite large and take much computational power. Another more
straightforward use case for the framework is to build a AI, which does not propose
a particular new basis set but offers the best basis sets for a particular system. A
framework like this could help inexperienced scientists get easier access to ab initio
DFT calculation using Gaussian basis sets. Especially chemists, who are the primary
user of gaussian basis sets, would be able to run DFT without the theoretical physics
background. Another helpful method would be to optimize a basis set for a specific
molecule and use this now smaller basis set in a more complex system. It is common
to split up large structures like proteins into different molecular substructures and use
different basis sets depending on the specific substructure. Therefore, substructures
that are more relevant to the chemical interactions are defined by larger basis sets, and
smaller basis sets will describe less relevant substructures. At this point, the optimized
basis sets can describe the less relevant substructures and enhance the overall accuracy.

63

4 Résumé and Outlook

In the end, we want to return to Hartree’s initial quote, which opened this Thesis.
Hartree first makes it possible to solve systems of complex molecules by reducing the
number of the required wave functions using a sophisticated Ansatz. It would be arrogant
to try to accomplish such a world-changing task in a Master’s thesis. In his manner,
we tried to reduce the number of required basis functions for specific molecules. Which
indeed were successful, though not practical. Nevertheless, achieving this knowledge has
to be tried, and it was tried in this Thesis.

64

Bibliography

Bibliography

[1] Charles Galton Darwin. “Douglas Rayner Hartree, 1897-1958”. In: Biographical
Memoirs of Fellows of the Royal Society 4 (1958). _eprint: https://royalsoci-
etypublishing.org/doi/pdf/10.1098/rsbm.1958.0010, pp. 102–116. doi: 10.1098/
rsbm.1958.0010. url: https://royalsocietypublishing.org/doi/abs/10.
1098/rsbm.1958.0010.

[2] W. J. Hehre, R. F. Stewart, and J. A. Pople. “Self-Consistent Molecular-Orbital
Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals”. In: J.
Chem. Phys. 51 (1969), pp. 2657–2664. doi: 10.1063/1.1672392.

[3] Benjamin P. Pritchard et al. “A New Basis Set Exchange: An Open, Up-to-date
Resource for the Molecular Sciences Community”. In: J. Chem. Inf. Model. 59
(2019), pp. 4814–4820. doi: 10.1021/acs.jcim.9b00725.

[4] Wolfram Koch and Max C. Holthausen. A chemist’s guide to density functional the-
ory / Wolfram Koch, Max C. Holthausen. Second edition. Wiley-VCH, 2001. isbn:
3-527-60004-3. url: https://search.ebscohost.com/login.aspx?direct=
true&db=cat06365a&AN=ulb.1679709372&lang=de&site=eds-live&scope=
site.

[5] Dirk Werner. Einführung in die höhere Analysis : topologische Räume, Funktionen-
theorie, gewöhnliche Differentialgleichungen, Maß- und Integrationstheorie, Funk-
tionalanalysis / Dirk Werner. Jan. 1, 2009. isbn: 978-3-540-79599-5. url: http:
//www.loc.gov/catdir/enhancements/fy1409/2009920037-d.html (visited on
10/06/2021).

[6] Per-Olov Löwdin. “Quantum Theory of Many-Particle Systems. III. Extension of
the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects”.
In: Phys. Rev. 97.6 (Mar. 1955). Publisher: American Physical Society, pp. 1509–
1520. doi: 10.1103/PhysRev.97.1509. url: https://link.aps.org/doi/10.
1103/PhysRev.97.1509.

[7] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev. 136.3
(Nov. 1964). Publisher: American Physical Society, B864–B871. doi: 10.1103/
PhysRev.136.B864. url: https://link.aps.org/doi/10.1103/PhysRev.136.
B864.

[8] Nicola Marzari. “A gentle introduction to DFT calculations - April 2020”. url:
https : / / www . materialscloud . org / learn / sections / VNL7RL / a - gentle -
introduction-to-dft-calculations-april-2020 (visited on 04/13/2022).

65

https://doi.org/10.1098/rsbm.1958.0010
https://doi.org/10.1098/rsbm.1958.0010
https://royalsocietypublishing.org/doi/abs/10.1098/rsbm.1958.0010
https://royalsocietypublishing.org/doi/abs/10.1098/rsbm.1958.0010
https://doi.org/10.1063/1.1672392
https://doi.org/10.1021/acs.jcim.9b00725
https://search.ebscohost.com/login.aspx?direct=true&db=cat06365a&AN=ulb.1679709372&lang=de&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=cat06365a&AN=ulb.1679709372&lang=de&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=cat06365a&AN=ulb.1679709372&lang=de&site=eds-live&scope=site
http://www.loc.gov/catdir/enhancements/fy1409/2009920037-d.html
http://www.loc.gov/catdir/enhancements/fy1409/2009920037-d.html
https://doi.org/10.1103/PhysRev.97.1509
https://link.aps.org/doi/10.1103/PhysRev.97.1509
https://link.aps.org/doi/10.1103/PhysRev.97.1509
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.136.B864
https://www.materialscloud.org/learn/sections/VNL7RL/a-gentle-introduction-to-dft-calculations-april-2020
https://www.materialscloud.org/learn/sections/VNL7RL/a-gentle-introduction-to-dft-calculations-april-2020

Bibliography

[9] Eric Welch. “Eric Welch PhD Dissertation - DFT modeling of halide perovskites
for optoelectronic applications”. PhD thesis. Oct. 2019. doi: 10.13140/RG.2.2.
22423.52646.

[10] Materials Cloud. Intro to DFT - Day 2: Density-functional practice - Nicola Marzari.
Apr. 16, 2020. url: https://www.youtube.com/watch?v=6tLx–alUZ8 (visited
on 06/01/2022).

[11] Jürgen Henk. “Concepts and Methods in Electronic Structure Calculations”. Feb. 6,
2009.

[12] J. P. Perdew and Alex Zunger. “Self-interaction correction to density-functional
approximations for many-electron systems”. In: Phys. Rev. B 23.10 (May 1981).
Publisher: American Physical Society, pp. 5048–5079. doi: 10.1103/PhysRevB.
23.5048. url: https://link.aps.org/doi/10.1103/PhysRevB.23.5048.

[13] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized Gradient
Approximation Made Simple”. In: Phys. Rev. Lett. 77.18 (Oct. 1996). Publisher:
American Physical Society, pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865.
url: https://link.aps.org/doi/10.1103/PhysRevLett.77.3865.

[14] A. D. Becke. “Density-functional exchange-energy approximation with correct asymp-
totic behavior”. In: Phys. Rev. A 38.6 (Sept. 1988). Publisher: American Physical
Society, pp. 3098–3100. doi: 10.1103/PhysRevA.38.3098. url: https://link.
aps.org/doi/10.1103/PhysRevA.38.3098.

[15] S. H. Vosko, L. Wilk, and M. Nusair. “Accurate spin-dependent electron liq-
uid correlation energies for local spin density calculations: a critical analysis”.
In: Canadian Journal of Physics 58.8 (Aug. 1, 1980). Publisher: NRC Research
Press, pp. 1200–1211. issn: 0008-4204. doi: 10 . 1139 / p80 - 159. url: https :
//doi.org/10.1139/p80-159 (visited on 05/24/2022).

[16] Chengteh Lee, Weitao Yang, and Robert G. Parr. “Development of the Colle-
Salvetti correlation-energy formula into a functional of the electron density”. In:
Phys. Rev. B 37.2 (Jan. 1988). Publisher: American Physical Society, pp. 785–789.
doi: 10.1103/PhysRevB.37.785. url: https://link.aps.org/doi/10.1103/
PhysRevB.37.785.

[17] Larry A. Curtiss et al. “Assessment of Gaussian-2 and density functional theo-
ries for the computation of enthalpies of formation”. In: The Journal of Chemical
Physics 106.3 (1997). Eprint: https://doi.org/10.1063/1.473182, pp. 1063–1079.
doi: 10.1063/1.473182. url: https://doi.org/10.1063/1.473182.

[18] David Sherrill. Basis Sets part 1. Feb. 14, 2021. url: https://www.youtube.com/
watch?v=Hk4YRb4okC4 (visited on 06/01/2022).

[19] Juerg Hutter. “Gaussian and Plane Waves Method (GPW)”. In: (2022). issn:
17590876. url: https : / / pc2 . uni - paderborn . de / fileadmin / pc2 / cp2k _
workshop/gpw.pdf.

66

https://doi.org/10.13140/RG.2.2.22423.52646
https://doi.org/10.13140/RG.2.2.22423.52646
https://www.youtube.com/watch?v=6tLx--alUZ8
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://link.aps.org/doi/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevA.38.3098
https://link.aps.org/doi/10.1103/PhysRevA.38.3098
https://link.aps.org/doi/10.1103/PhysRevA.38.3098
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1103/PhysRevB.37.785
https://link.aps.org/doi/10.1103/PhysRevB.37.785
https://link.aps.org/doi/10.1103/PhysRevB.37.785
https://doi.org/10.1063/1.473182
https://doi.org/10.1063/1.473182
https://www.youtube.com/watch?v=Hk4YRb4okC4
https://www.youtube.com/watch?v=Hk4YRb4okC4
https://pc2.uni-paderborn.de/fileadmin/pc2/cp2k_workshop/gpw.pdf
https://pc2.uni-paderborn.de/fileadmin/pc2/cp2k_workshop/gpw.pdf

Bibliography

[20] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry: Introduction to Ad-
vanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publica-
tions, 1996. isbn: 978-0-486-69186-2. url: https://books.google.de/books?
id=6mV9gYzEkgIC.

[21] Alexander L. Fradkov. “Early History of Machine Learning”. In: IFAC-PapersOnLine.
21st IFAC World Congress 53.2 (Jan. 1, 2020), pp. 1385–1390. issn: 2405-8963. doi:
10.1016/j.ifacol.2020.12.1888. url: https://www.sciencedirect.com/
science/article/pii/S2405896320325027 (visited on 09/21/2022).

[22] Alexander Amini and Ava Soleimany. MIT Deep Learning 6.S191. MIT Deep
Learning 6.S191. url: http://introtodeeplearning.com (visited on 06/15/2022).

[23] Michael Frank, Dimitris Drikakis, and Vassilis Charissis. “Machine-Learning Meth-
ods for Computational Science and Engineering”. In: Computation 8 (Mar. 2020),
p. 15. doi: 10.3390/computation8010015.

[24] xitorch: differentiable scientific computing library. original-date: 2020-09-25T12:19:45Z.
May 4, 2022. url: https://github.com/xitorch/xitorch (visited on 06/09/2022).

[25] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[26] Musstafa. Optimizers in Deep Learning. MLearning.ai. Feb. 12, 2022. url: https:
//medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
(visited on 09/21/2022).

[27] S. Raschka and V. Mirjalili. Python Machine Learning: Machine Learning and
Deep Learning with Python, Scikit-Learn, and TensorFlow 2, 3rd Edition. Expert
insight. Packt Publishing, 2019. isbn: 978-1-78995-575-0. url: https://books.
google.de/books?id=n1cjyAEACAAJ.

[28] CS231n Convolutional Neural Networks for Visual Recognition. url: https://
cs231n.github.io/neural-networks-3/ (visited on 09/21/2022).

[29] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In:
(2016). doi: 10.48550/ARXIV.1609.04747. url: https://arxiv.org/abs/1609.
04747.

[30] Daksh Trehan. Gradient Descent Explained. Medium. May 21, 2021. url: https://
towardsdatascience.com/gradient-descent-explained-9b953fc0d2c (visited
on 09/21/2022).

[31] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: (2014). doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/
abs/1412.6980.

67

https://books.google.de/books?id=6mV9gYzEkgIC
https://books.google.de/books?id=6mV9gYzEkgIC
https://doi.org/10.1016/j.ifacol.2020.12.1888
https://www.sciencedirect.com/science/article/pii/S2405896320325027
https://www.sciencedirect.com/science/article/pii/S2405896320325027
http://introtodeeplearning.com
https://doi.org/10.3390/computation8010015
https://github.com/xitorch/xitorch
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
https://books.google.de/books?id=n1cjyAEACAAJ
https://books.google.de/books?id=n1cjyAEACAAJ
https://cs231n.github.io/neural-networks-3/
https://cs231n.github.io/neural-networks-3/
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://towardsdatascience.com/gradient-descent-explained-9b953fc0d2c
https://towardsdatascience.com/gradient-descent-explained-9b953fc0d2c
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Bibliography

[32] Vitaly Bushaev. Understanding RMSprop — faster neural network learning. Medium.
Sept. 2, 2018. url: https://towardsdatascience.com/understanding-rmsprop-
faster-neural-network-learning-62e116fcf29a (visited on 09/21/2022).

[33] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a sur-
vey”. In: (2015). Publisher: arXiv. doi: 10 . 48550 / ARXIV . 1502 . 05767. url:
https://arxiv.org/abs/1502.05767.

[34] Rubin H. Landau gnd_133312925, Cristian C. Bordeianu, and Manuel J. Páez.
Computational physics : problem solving with Python / Rubin H. Landau, Manuel
J. Páez, Cristian C. Bordeianu. Jan. 1, 2015. isbn: 978-3-527-68467-0. url: https:
//zbmath.org/?q=an:1341.70001 (visited on 06/09/2022).

[35] Jacob Schmieder. “EEG Analyse zum Test von Bewusstsein”. Bachelor Thesis.
Martin-Luther-Universität Halle-Wittenberg, 2019. url: http://www.physik.
uni-halle.de/Fachgruppen/kantel/Bachelorarbeit_Schmieder.pdf.

[36] Soeren Laue. On the Equivalence of Forward Mode Automatic Differentiation and
Symbolic Differentiation. 2019. doi: 10.48550/ARXIV.1904.02990. url: https:
//arxiv.org/abs/1904.02990.

[37] James Bradbury et al. JAX: composable transformations of Python+NumPy pro-
grams. Version 0.3.13. 2018. url: http://github.com/google/jax.

[38] Peize Lin, Xinguo Ren, and Lixin He. “Strategy for constructing compact numeri-
cal atomic orbital basis sets by incorporating the gradients of reference wavefunc-
tions”. In: Phys. Rev. B 103.23 (June 2021). Publisher: American Physical Society,
p. 235131. doi: 10.1103/PhysRevB.103.235131. url: https://link.aps.org/
doi/10.1103/PhysRevB.103.235131.

[39] Daniel Sanchez-Portal, Emilio Artacho, and Jose M. Soler. “Projection of plane-
wave calculations into atomic orbitals”. In: Solid State Communications 95.10
(1995), pp. 685–690. issn: 0038-1098. doi: https://doi.org/10.1016/0038-
1098(95)00341-X. url: https://www.sciencedirect.com/science/article/
pii/003810989500341X.

[40] Daniel Sánchez-Portal, Emilio Artacho, and José M. Soler. “Analysis of atomic
orbital basis sets from the projection of plane-wave results”. In: Journal of Physics:
Condensed Matter 8.21 (May 1996). Publisher: IOP Publishing, pp. 3859–3880.
doi: 10.1088/0953-8984/8/21/012. url: https://doi.org/10.1088/0953-
8984/8/21/012.

[41] Emilio Artacho and Lorenzo Miláns del Bosch. “Nonorthogonal basis sets in quan-
tum mechanics: Representations and second quantization”. In: Physical Review A
43.11 (June 1, 1991), pp. 5770–5777. issn: 1050-2947, 1094-1622. doi: 10.1103/
PhysRevA.43.5770. url: https://link.aps.org/doi/10.1103/PhysRevA.43.
5770 (visited on 09/17/2022).

[42] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

68

https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://doi.org/10.48550/ARXIV.1502.05767
https://arxiv.org/abs/1502.05767
https://zbmath.org/?q=an:1341.70001
https://zbmath.org/?q=an:1341.70001
http://www.physik.uni-halle.de/Fachgruppen/kantel/Bachelorarbeit_Schmieder.pdf
http://www.physik.uni-halle.de/Fachgruppen/kantel/Bachelorarbeit_Schmieder.pdf
https://doi.org/10.48550/ARXIV.1904.02990
https://arxiv.org/abs/1904.02990
https://arxiv.org/abs/1904.02990
http://github.com/google/jax
https://doi.org/10.1103/PhysRevB.103.235131
https://link.aps.org/doi/10.1103/PhysRevB.103.235131
https://link.aps.org/doi/10.1103/PhysRevB.103.235131
https://doi.org/https://doi.org/10.1016/0038-1098(95)00341-X
https://doi.org/https://doi.org/10.1016/0038-1098(95)00341-X
https://www.sciencedirect.com/science/article/pii/003810989500341X
https://www.sciencedirect.com/science/article/pii/003810989500341X
https://doi.org/10.1088/0953-8984/8/21/012
https://doi.org/10.1088/0953-8984/8/21/012
https://doi.org/10.1088/0953-8984/8/21/012
https://doi.org/10.1103/PhysRevA.43.5770
https://doi.org/10.1103/PhysRevA.43.5770
https://link.aps.org/doi/10.1103/PhysRevA.43.5770
https://link.aps.org/doi/10.1103/PhysRevA.43.5770

Bibliography

[43] Jacob Schmieder. OptBasisSets. url: https://github.com/Jaikinator/OptBasisSets
(visited on 07/21/2022).

[44] Qiming Sun et al. “PySCF: the Python-based simulations of chemistry framework”.
In: WIREs Computational Molecular Science 8.1 (2018). _eprint: https://wires.on-
linelibrary.wiley.com/doi/pdf/10.1002/wcms.1340, e1340. doi: https://doi.org/
10.1002/wcms.1340. url: https://wires.onlinelibrary.wiley.com/doi/
abs/10.1002/wcms.1340.

[45] Qiming Sun et al. “Recent developments in the PySCF program package”. In: The
Journal of Chemical Physics 153.2 (2020). Eprint: https://doi.org/10.1063/5.0006074,
p. 024109. doi: 10.1063/5.0006074. url: https://doi.org/10.1063/5.
0006074.

[46] M. F. Kasim and S. M. Vinko. “Learning the Exchange-Correlation Functional
from Nature with Fully Differentiable Density Functional Theory”. In: Phys. Rev.
Lett. 127.12 (Sept. 2021). Publisher: American Physical Society, p. 126403. doi:
10.1103/PhysRevLett.127.126403. url: https://link.aps.org/doi/10.
1103/PhysRevLett.127.126403.

[47] Ask Hjorth Larsen et al. “The atomic simulation environment—a Python library
for working with atoms”. In: Journal of Physics: Condensed Matter 29.27 (July 12,
2017), p. 273002. issn: 0953-8984, 1361-648X. doi: 10.1088/1361-648X/aa680e.
url: https://iopscience.iop.org/article/10.1088/1361-648X/aa680e
(visited on 07/21/2022).

[48] Martín Abadi et al. TensorFlow, Large-scale machine learning on heterogeneous
systems. Nov. 2015. doi: 10.5281/zenodo.4724125.

[49] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020). Publisher: Springer Science and Business Media LLC, pp. 357–362.
doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/s41586-
020-2649-2.

[50] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[51] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[52] Plotly Technologies Inc. Collaborative data science. Place: Montreal, QC Publisher:
Plotly Technologies Inc. 2015. url: https://plot.ly.

[53] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science
& Engineering 9.3 (2007). Publisher: IEEE COMPUTER SOC, pp. 90–95. doi:
10.1109/MCSE.2007.55.

69

https://github.com/Jaikinator/OptBasisSets
https://doi.org/https://doi.org/10.1002/wcms.1340
https://doi.org/https://doi.org/10.1002/wcms.1340
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1340
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1340
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/5.0006074
https://doi.org/10.1103/PhysRevLett.127.126403
https://link.aps.org/doi/10.1103/PhysRevLett.127.126403
https://link.aps.org/doi/10.1103/PhysRevLett.127.126403
https://doi.org/10.1088/1361-648X/aa680e
https://iopscience.iop.org/article/10.1088/1361-648X/aa680e
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://plot.ly
https://doi.org/10.1109/MCSE.2007.55

Bibliography

[54] Susi Lehtola et al. “Recent developments in libxc — A comprehensive library of
functionals for density functional theory”. In: SoftwareX 7 (Jan. 1, 2018). Pub-
lisher: Elsevier, pp. 1–5. issn: 2352-7110. doi: 10.1016/j.softx.2017.11.002.
url: https://doi.org/10.1016/j.softx.2017.11.002 (visited on 09/25/2022).

[55] Amir Karton, Nitai Sylvetsky, and Jan M. L. Martin. “W4-17: A diverse and high-
confidence dataset of atomization energies for benchmarking high-level electronic
structure methods”. In: Journal of Computational Chemistry 38.24 (2017). Eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.24854, pp. 2063–2075. doi: https:
//doi.org/10.1002/jcc.24854. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/jcc.24854.

[56] J. Stephen Binkley, John A. Pople, and Warren J. Hehre. “Self-consistent molecular
orbital methods. 21. Small split-valence basis sets for first-row elements”. In: J. Am.
Chem. Soc. 102 (1980), pp. 939–947. doi: 10.1021/ja00523a008.

[57] Thom H. Dunning. “Gaussian basis sets for use in correlated molecular calcula-
tions. I. The atoms boron through neon and hydrogen”. In: J. Chem. Phys. 90
(1989), pp. 1007–1023. doi: 10.1063/1.456153.

[58] Frank Jensen. “Polarization Consistent Basis Sets. 4: The Elements He, Li, Be, B,
Ne, Na, Mg, Al, and Ar”. In: J. Phys. Chem. A 111 (2007), pp. 11198–11204. doi:
10.1021/jp068677h.

[59] Frank Jensen. “Polarization consistent basis sets. III. The importance of diffuse
functions”. In: J. Chem. Phys. 117 (2002), pp. 9234–9240. doi: 10 . 1063 / 1 .
1515484.

[60] Frank Jensen. “Polarization consistent basis sets. II. Estimating the Kohn-Sham
basis set limit”. In: J. Chem. Phys. 116 (2002), pp. 7372–7379. doi: 10.1063/1.
1465405.

[61] Frank Jensen. “Polarization consistent basis sets: Principles”. In: J. Chem. Phys.
115 (2001), pp. 9113–9125. doi: 10.1063/1.1413524.

70

https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/https://doi.org/10.1002/jcc.24854
https://doi.org/https://doi.org/10.1002/jcc.24854
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24854
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24854
https://doi.org/10.1021/ja00523a008
https://doi.org/10.1063/1.456153
https://doi.org/10.1021/jp068677h
https://doi.org/10.1063/1.1515484
https://doi.org/10.1063/1.1515484
https://doi.org/10.1063/1.1465405
https://doi.org/10.1063/1.1465405
https://doi.org/10.1063/1.1413524

Appendix

Appendix

Used Molecules from the G2 Database

PH3
P2
CH3CHO
H2COH
CS
OCHCHO
C3H9C
CH3COF
CH3CH2OCH3
HCOOH
HCCl3
HOCl
H2
SH2
C2H2
C4H4NH
CH3SCH3
SiH2_s3B1d
CH3SH
CH3CO
CO
ClF3
SiH4
C2H6CHOH
CH2NHCH2
isobutene
HCO
bicyclobutane
LiF
Si
C2H6
CN
ClNO
S

SiF4
H3CNH2
methylenecyclopropane
CH3CH2OH
F
NaCl
CH3Cl
CH3SiH3
AlF3
C2H3
ClF
PF3
PH2
CH3CN
cyclobutene
CH3ONO
SiH3
C3H6_D3h
CO2
NO
trans-butane
H2CCHCl
LiH
NH2
CH
CH2OCH2
C6H6
CH3CONH2
H2CCHCN
butadiene
C
H2CO
CH3COOH
HCF3

CH3S
CS2
SiH2_s1A1d
C4H4S
N2H4
OH
CH3OCH3
C5H5N
H2O
HCl
CH2_s1A1d
CH3CH2SH
CH3NO2
Cl
Be
BCl3
C4H4O
Al
CH3O
CH3OH
C3H7Cl
isobutane
Na
CCl4
CH3CH2O
H2CCHF
C3H7
CH3
O3
P
C2H4
NCCN
S2
AlCl3

71

Appendix

SiCl4
SiO
C3H4_D2d
H
COF2
2-butyne
C2H5
BF3
N2O
F2O
SO2
H2CCl2
CF3CN
HCN
C2H6NH
OCS
B
ClO
C3H8

HF
O2
SO
NH
C2F4
NF3
CH2_s3B1d
CH3CH2Cl
CH3COCl
NH3
C3H9N
CF4
C3H6_Cs
Si2H6
HCOOCH3
O
CCH
N
Si2
C2H6SO

C5H8
H2CF2
Li2
CH2SCH2
C2Cl4
C3H4_C3v
CH3COCH3
F2
CH4
SH
H2CCO
CH3CH2NH2
Li
N2
Cl2
H2O2
Na2
BeH
C3H4_C2v
NO2

Used Molecules from the W417 Database

acetaldehyde
acetic
alcl3
alcl
alf3
alf
alh3
alh
allene
allyl
b2h6
benzene
beta-lactim
bf3
bf
bh3
bhf2
bh
bn3pi
borole

c2cl2
c2cl4
c2cl6
c2clh3
c2clh5
c2clh
c2f4
c2f6
c2h2
c2h3f
c2h4
c2h5f
c2h6
cch
ccl2h2
ccl2
ccl2o
ccl3h
ccl4
cclh3

cf2cl2
cf2
cf4
cf
ch2ch
ch2clf
ch2c
ch2f2
ch2nh2
ch2nh
ch2-sing
ch2-trip
ch3f
ch3
ch3nh2
ch3nh
ch3ph2
ch4
c-hcoh
chf3

ch
c-hono
c-hooo
cis-c2f2cl2
cl2
clcn
clcof
clf
clno
clo
c-n2h2
cn
co2
co
cs2
cs
cyclobutadiene
cyclobutane
cyclobutene
cyclopentadiene

72

Appendix

cyclopropane
cyclopropene
cyclopropyl
dioxetan2one
dioxetane
dioxirane
dithiotane
ethanol
f2co
f2
fccf
fno
formamide
formic-anhydride
formic
furan
glyoxal
h2ccn
h2cn
h2co
h2
h2no
h2o
h2s
hccf

hcl
hclo4
hcnh
hcn
hcno
hcof
hco
hf
hnc
hnco
hnnn
hno
hocl
hoclo2
hoclo
hocn
hof
honc
hooh
hoo
hs
ketene
methanol
n2h4
n2h
n2

n2o4
n2o
n-butane
nccn
nh2cl
nh2f
nh2
nh2oh
nh3
nh
no2
no
n-pentane
o2
ocs
oh
oxadiazole
oxetane
oxirane
oxirene
p2
p4
pf3
pf5
ph3
propane

propene
propyne
pyrrole
s2
s2o
sf6
si2h6
sif4
sif
sih3f
sih4
sih
silole
sio
so2
so3
so
ssh
t-butadiene
tetrahedrane
t-hcoh
thiophene
t-hono
t-hooo
t-n2h2
trans-c2f2cl2

73

Appendix

Learning Rate Results for the G2 Database

learning rate lr counts unfiltered lr counts filtered lr counts in best results
2e-10 1612
2e-09 1546
2e-07 1276 64.0 9.0
2e-08 1272 3.0
2e-06 1186 259.0 31.0
2e-05 1089 355.0 70.0
0.0002 975 374.0 106.0
0.002 844 231.0 40.0

Table 4.1: Dependency of the learning rate for both Adam and gradient descent com-
bined. The counts are the total number of the specific results. The filter
drops out all wrong learning results. The Data is calculated throw the non
weighed data.

learning rate lr counts adam unfiltered lr counts filtered lr counts in best results
2e-10 1612
2e-09 1546
2e-07 1276 64.0 9.0
2e-08 1272 3.0
2e-06 1186 259.0 31.0
2e-05 1089 355.0 70.0
0.0002 975 374.0 106.0
0.002 844 231.0 40.0

Table 4.2: Dependency of the learning rate for Adam. The counts are the total number
of the specific results. The filter drops out all wrong learning results. The
Data is calculated throw the non weighed data.

Relative improvement of the basis optimization in dependency
of the number of atoms

74

Appendix

F
ig

ur
e

4.
1:

R
el

at
iv

e
im

pr
ov

em
en

t
of

an
op

tim
iz

at
io

n
10

0
E

r
e

f
.−

in
it

−
E

o
p

tb
−

in
it

de
pe

nd
s

on
th

e
nu

m
be

r
of

A
to

m
s

in
a

ce
rt

ai
n

m
ol

ec
ul

e.
D

isp
la

ye
d

fo
r

di
ffe

re
nt

ba
sis

va
ria

tio
ns

us
in

g
th

e
no

n
we

ig
he

d
lo

ss
fu

nc
tio

ns
.

75

Appendix

F
ig

ur
e

4.
2:

R
el

at
iv

e
im

pr
ov

em
en

t
of

an
op

tim
iz

at
io

n
10

0
E

r
e

f
.−

in
it

−
E

o
p

tb
−

in
it

de
pe

nd
s

on
th

e
nu

m
be

r
of

A
to

m
s

in
a

ce
rt

ai
n

m
ol

ec
ul

e.
D

isp
la

ye
d

fo
r

th
e

op
tim

iz
ed

ba
sis

va
ria

tio
ns

us
in

g
th

e
we

ig
he

d
lo

ss
fu

nc
tio

ns
.

76

Appendix

F
ig

ur
e

4.
3:

E
xa

m
pl

e
fo

r
th

e
ra

w
ou

tp
ut

da
ta

ou
t.

T
he

fir
st

tw
o

co
lu

m
ns

ar
e

th
e

m
ol

ec
ul

e’
s

na
m

e
an

d
th

e
fil

e
nu

m
be

r
in

th
e

fo
ld

er
st

ru
ct

ur
e.

T
he

n
th

e
in

iti
al

en
er

gy
,t

he
re

fe
re

nc
e

en
er

gy
(t

ex
tit

re
f_

en
er

gy
),

as
we

ll
as

th
e

en
er

gy
us

in
g

th
e

op
tim

iz
ed

ba
sis

op
t_

en
er

gy
,a

re
lis

te
d.

A
fte

rt
hi

s,
th

e
M

L
re

la
te

d
pa

ra
m

et
er

sa
re

lis
te

d.
T

he
le

ar
ni

ng
ra

te
co

lu
m

n
is

se
lf-

sp
ea

ki
ng

.
O

n
th

e
rig

ht
,t

he
m

ax
ite

r
co

lu
m

n
gi

ve
s

th
e

nu
m

be
r

of
m

ax
im

al
po

ss
ib

le
ite

ra
tio

ns
po

ss
ib

le
in

th
e

tr
ai

ni
ng

ru
n.

m
in

ite
r,

on
th

e
ot

he
r

ha
nd

,
th

e
m

in
im

al
ite

ra
tio

ns
a

tr
ai

ni
ng

ha
s

to
do

be
fo

re
ch

ec
ki

ng
on

se
t

te
rm

in
at

io
n

co
nd

iti
on

s.
T

he
m

et
ho

d
is

th
e

op
tim

iz
er

,
w

hi
ch

wa
s

us
ed

fo
r

th
e

tr
ai

ni
ng

.
T

he
co

lu
m

ns
be

st
_

f,
be

st
_

df
,b

es
t_

dx
no

rm
ar

e
th

e
be

st
va

lu
e

of
th

e
lo

ss
fu

nc
tio

n.
In

th
is

ca
se

,t
he

no
n-

we
ig

he
d

lo
ss

fu
nc

tio
n.

df
is

th
e

di
ffe

re
nc

e
be

tw
ee

n
th

e
cu

rr
en

t
lo

ss
fu

nc
tio

n
va

lu
e

an
d

th
e

va
lu

e
in

th
e

pr
ev

io
us

ep
oc

h.
T

he
dx

no
rm

is
th

e
di

ffe
re

nc
e

be
tw

ee
n

th
e

no
rm

s
of

th
e

cu
rr

en
t

pa
ra

m
et

er
va

lu
es

an
d

th
e

no
rm

of
th

e
pa

ra
m

et
er

va
lu

es
in

th
e

pr
ev

io
us

ep
oc

h.
be

st
_

i,
m

ax
_

i
ar

e
th

e
m

ax
im

um
nu

m
be

r
of

ite
ra

tio
ns

do
ne

du
rin

g
th

e
tr

ai
ni

ng
,

an
d

be
st

_
im

ar
ks

th
e

ep
oc

h
on

w
hi

ch
th

e
be

st
m

in
im

a
we

re
fo

un
d.

f_
rt

ol
is

a
te

rm
in

at
io

n
co

nd
iti

on
ba

se
d

on
th

e
ou

tp
ut

’s
re

la
tiv

e
to

le
ra

nc
e.

ba
si

s
an

d
re

f_
ba

si
s

ar
e

th
e

na
m

es
of

th
e

in
iti

al
,t

he
re

fe
re

nc
e

ba
sis

se
t.

77

1 Dimensional DFT Code using JAX

June 24, 2022

1 1 Dimensional DFT Code

• This code is bade on the code of the Yohei Tamura:
https://github.com/tamuhey/python_1d_dft/blob/master/numpy_1ddft.ipynb

The goal is to adapt a one dimensinal DFT Code based on numpy, to the Jax framework done by
google.

• Jax: https://github.com/google/jax

• Matrix mechanics (for further information) :
– https://www.ph.tum.de/academics/bsc/break/2008s/fk_PH0007_03_course.pdf

For this we using the Hamiltonian:

Ĥ = −1

2

d

dx
+ υHA(x) + vLDA

x + x

• where vLDA
x stands for local density approximation

• υHA(x) stands for the Coulomb Potential
• x² represents the harmonmic oscillator

[1]: from jax.config import config
config.update("jax_enable_x64", True)
config.update('jax_platform_name', 'cpu')
import numpy as np
import matplotlib.pyplot as plt
import jax.numpy as jnp
import jax.scipy as jsci
from jax import grad, jit, vmap
from jax.ops import index, index_add, index_update
from jax import random
from jax.tree_util import partial

%matplotlib inline

1.1 Try to realize a Differential operator

bevor starting use a f(x) = sin(x) to cacualte first and second derivation of f(x)

1

Appendix

78

[2]: n_grid = 200
x = jnp.linspace(-5,5, n_grid, dtype=jnp.float64)
y = jnp.sin(x)
plt.plot(x,y)

[2]: [<matplotlib.lines.Line2D at 0x7f91e82abdc0>]

1.1.1 first derivation:

• in one dimension we can aproximate a differentiation by

(
dy

dx
)i =

yi+1 − yi
h

• so further the Matrix is:

Dij =
δi+1,j − δi,j

h

• the reason of a Matix is here that there are Elements in the Dimension of Di+1,j so

• we could write as follows:

(
dy

dx
)i = Dijyj

• The derivative may not be well defined at the end of the grid.
• δij is Kronecker delta

2

Appendix

79

• Einstein summation is used for last equation

[3]: @jit
def diffOP_first(x):

n_grid_loc = len(x)
h=x[1]-x[0]
delta_ip1_j = jnp.diagflat(jnp.ones(n_grid_loc-1),1) #create the Kronecker␣

↪→i+1, j
jnp.diagflat Create a two-dimensional array with the flattened input as a␣

↪→diagonal.
np.diagflat([1,2], 1)
==> array([[0, 1, 0],
[0, 0, 2],
[0, 0, 0]])'

delta_ij = jnp.eye(n_grid_loc) #crate the diagonal Elements

1 in diagonal else 0 if k= 0 else k shift used diagonal
#>>> np.eye(3, k=1)
array([[0., 1., 0.],
[0., 0., 1.],
[0., 0., 0.]])

D = (delta_ip1_j -delta_ij)/ h #calc Differential operator D_ij
return D

D = diffOP_first(x)

1.1.2 Second order differentiation

• In the same way as the first order:

D2
ij =

δi+1,j − 2δi,j + δi−1,j

h2

• This could be written with the first order Dij , as follows (take care of the transpose):

D2
ij = −DikDjk

• The derivative may not be well defined at the end of the grid.

[4]: @jit
def diffOP_second(x, diffOP1 = False):

if diffOP1 is False:
D = diffOP_first(x)

else:
D = diffOP1

D2 = D.dot(-D.T)

3

Appendix

80

D2_new = index_update(D2, index[-1,-1], D2[0,0])
return D2_new

D2 = diffOP_second(x, D)

diff_y = D.dot(y)
diff2_y = D2.dot(y)

plt.plot(x,y,label = 'sin(x)')
plt.plot(x[:-1],diff_y[:-1], label = 'cos(x)')
plt.plot(x[1:-1], diff2_y[1:-1] , label = '-sin(x)')
plt.legend(loc = "upper left")

[4]: <matplotlib.legend.Legend at 0x7f91e813cfa0>

2 Non-interacting electrons

• This is the Hamiltonian of non-interacting free particles in a box given by the size of grid:

Ĥ = T̂ = −1

2

d2

dx2

• We could solve the KS equation by solving the eigenvalue problem
• using jsci.linalg.eigh() makes this pretty easy:

[5]: eig_non_e, psi_non_e = jsci.linalg.eigh(-D2/2)
eig_non_e is the eingenvalue vom H psi = E psi

4

Appendix

81

psi_non_e is the wavefunktion psi

[6]: # ploted wavefunction (energies are shown in the label)
for i in range(5):

plt.plot(x,psi_non_e[:,i], label=f"{eig_non_e[i]:.4f}")
plt.legend(loc=1)

3 Harmonic oscillator

• include the external potential vext = x2:

Ĥ = T̂ = −1

2

d2

dx2
+ x2

• we can write the potential as a matrix X, as follows:

X = x2 = δijx · x

• after that we can again solfe the KS eq as eigenvalue Problem

[7]: X = jnp.diagflat(x*x)
eig_harm, psi_harm = np.linalg.eigh(-D2/2+X)

[8]: # ploted wavefunction (energies are shown in the label)

plt.plot(x,psi_harm[:,0], label=f"{eig_harm[i]:.4f}")

5

Appendix

82

plt.legend(loc=1)

[8]: <matplotlib.legend.Legend at 0x7f91e8052c40>

4 Well potential

(Potentialtopf)

[9]: w_old =jnp.full_like(x,1.0e10) #creat array of len of array x
w = index_update(w_old, index[jnp.logical_and(x>-2,x<2)], 0.)
plt.plot(x, w)

[9]: [<matplotlib.lines.Line2D at 0x7f91e0763b80>]

6

Appendix

83

• Solve KS again adding the Well Potential but but without the harmonic part

[10]: eig_well, psi_well= jsci.linalg.eigh(-D2/2+jnp.diagflat(w))

[11]: # ploted wavefunction (energies are shown in the label)
for i in range(5):

plt.plot(x,psi_well[:,i], label=f"{eig_well[i]:.4f}")
plt.legend(loc=1)

7

Appendix

84

5 Density

• We will want to include the Coulomb or Hatree interacion as well as LDA exchange

• Both of which are density functinals

• So we need to calculate the electron density

• Each state should be normalized: ∫
|ψ|2dx = 1

• let fn be occupation numbers, the density n(x) can be written as follows:

n(x) =
∑
n

fn|ψ(x)|2

• Note:

– Each state fits up to two electrons: one with spin up, and one with spin down.
– In DFT, we calculate the ground state.

[12]: # integral
@jit
def integral(x,y):

dx = x[1]- x[0]
return jnp.sum(y*dx, axis = 0)

• number of electrons

8

Appendix

85

[13]: num_electrons = 17

• density

[14]: #@partial(jit , static_argnums = (1,))
@jit
def density(num_electron, psi , x):

#norm the wave function:
I = integral(x,psi**2)
normed_psi = psi / jnp.sqrt(I)
#follow the Hundschen rules to set up the 2 spins on the orbitals
new_orb = False
num_orb = num_electrons // 2

if num_electrons % 2:
new_orb = True

fn_0 = jnp.full(num_orb + new_orb,2.)

if new_orb == True:
fn = index_update(fn_0, index[-1], 1)

fnT = fn.reshape((-1,1))
used_wavefunc = normed_psi.T[0:len(fn), :]

def dens(orb, wavefunc):
return orb * (wavefunc**2)

return jnp.sum(dens(fnT, used_wavefunc), axis = 0)

%timeit density(num_electrons,psi_non_e, x)

62.9 μs ± 1.58 μs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

[15]: plt.plot(density(num_electrons,psi_non_e, x), label="non")
plt.plot(density(num_electrons,psi_harm, x), label="harm")
plt.plot(density(num_electrons,psi_well, x), label="well")
plt.legend(loc=1)

[15]: <matplotlib.legend.Legend at 0x7f91e0711ac0>

9

Appendix

86

6 Exchange energy

• Consider the exchange functional in the LDA: (to remember local density approximation)
– ignore the correlation for simplicity.

ELDA
X [n] = −3

4

(
3

π

)1/3 ∫
n4/3dx

• The potential is given by the derivative of the exchange energy with respect to the density:

vLDA
X [n] =

∂ELDA
X

∂n
= −

(
3

π

)1/3

n1/3

• the code is the following

[16]: @jit
def get_exchange(nx,x):

energy=-3./4.*(3./jnp.pi)**(1./3.)*integral(x,nx**(4./3.))
potential=-(3./jnp.pi)**(1./3.)*nx**(1./3.)
return energy, potential

7 coulomb potential

• Electrostatic energy or Hatree energy

• The expression of 3D-Hatree energy is not converged in 1D.

10

Appendix

87

• Hence we cheat and use a modified as follows:

EHa =
1

2

∫∫
n(x)n(x′)√
(x− x′)2 + ε

dxdx′

– where ε is a small positive constant

• The potential is given by:

vHa =

∫
n(x′)√

(x− x′)2 + ε
dx′

• In a matirx expression:

EHa =
1

2

ninjh
2√

(xi − xj)2 + ε

vHa,i =
njh√

(xi − xj)2 + ε

[17]: @jit
def get_hatree(nx,x, eps=1e-1):

h = x[1]-x[0]

energy = jnp.sum(nx[None,:]*nx[:,None]*h**2/jnp.sqrt((x[None,:]-x[:
↪→,None])**2+eps)/2)

potential = jnp.sum(nx[None,:]*h/jnp.sqrt((x[None,:]-x[:
↪→,None])**2+eps),axis=-1)

return energy, potential

8 Solve the KS equation: Self-consistency loop

0. initialize the density (you can take an arbitrary constant) (beliebige constante kann verwendet
werden)

1. Calculate the Exchange and Hatree potentials
2. Calculate the Hamiltonian
3. Calculate the wavefunctions and eigen values
4. If not converged, calculate the density and back to 1.

[18]: def print_log(i,log):
print(f"step: {i:<5} energy: {log['energy'][-1]:<10.4f} energy_diff:␣

↪→{log['energy_diff'][-1]:.10f}")

[19]: max_iter=1000
energy_tolerance=1e-5
log={"energy":[float("inf")], "energy_diff":[float("inf")]}

[20]: @jit
def Energy_min(dens,x):

11

Appendix

88

ex_energy, ex_potential = get_exchange(dens, x)
ha_energy, ha_potential = get_hatree(dens,x)

Hamiltonian
H = -D2/2 + jnp.diagflat(ex_potential+ha_potential+x*x)

energy, psi = jnp.linalg.eigh(H)
return energy, psi

[21]: dens=jnp.zeros(n_grid)

for i in range(max_iter):

energy, psi = Energy_min(dens,x)

log
log["energy"].append(energy[0])
energy_diff = energy[0]-log["energy"][-2]
log["energy_diff"].append(energy_diff)
print_log(i,log)

convergence

if np.abs(energy_diff) < energy_tolerance:
print("converged!")
break

update density
dens = density(num_electrons,psi,x)

else:
print("not converged")

step: 0 energy: 0.7069 energy_diff: -inf
step: 1 energy: 16.3625 energy_diff: 15.6555321919
step: 2 energy: 13.8021 energy_diff: -2.5603559494
step: 3 energy: 15.3002 energy_diff: 1.4980525863
step: 4 energy: 14.4119 energy_diff: -0.8882287680
step: 5 energy: 14.9470 energy_diff: 0.5350438262
step: 6 energy: 14.6242 energy_diff: -0.3228271880
step: 7 energy: 14.8201 energy_diff: 0.1959328656
step: 8 energy: 14.7011 energy_diff: -0.1190355457
step: 9 energy: 14.7735 energy_diff: 0.0724651058
step: 10 energy: 14.7294 energy_diff: -0.0441312736
step: 11 energy: 14.7563 energy_diff: 0.0268946713
step: 12 energy: 14.7399 energy_diff: -0.0163922405
step: 13 energy: 14.7499 energy_diff: 0.0099933983
step: 14 energy: 14.7438 energy_diff: -0.0060926001
step: 15 energy: 14.7475 energy_diff: 0.0037147279
step: 16 energy: 14.7452 energy_diff: -0.0022649307

12

Appendix

89

step: 17 energy: 14.7466 energy_diff: 0.0013810031
step: 18 energy: 14.7458 energy_diff: -0.0008420446
step: 19 energy: 14.7463 energy_diff: 0.0005134280
step: 20 energy: 14.7460 energy_diff: -0.0003130574
step: 21 energy: 14.7462 energy_diff: 0.0001908842
step: 22 energy: 14.7461 energy_diff: -0.0001163900
step: 23 energy: 14.7461 energy_diff: 0.0000709679
step: 24 energy: 14.7461 energy_diff: -0.0000432721
step: 25 energy: 14.7461 energy_diff: 0.0000263849
step: 26 energy: 14.7461 energy_diff: -0.0000160880
step: 27 energy: 14.7461 energy_diff: 0.0000098095
converged!

[22]: for i in range(5):
plt.plot(x,psi[:,i], label = f"{energy[i]:.4f}")
plt.legend(loc = 1)

• compare the density to free particles

[23]: plt.plot(dens)
plt.plot(density(num_electrons,psi_harm,x), label="no-interaction")
plt.legend()

[23]: <matplotlib.legend.Legend at 0x7f91e0504a90>

13

Appendix

90

14

Appendix

91

Declaration of authorship

Declaration of authorship

I hereby declare that I have achieved the following module performance/partial module
performance in the module:

with the title:

independently and only using the sources and aids indicated. The passages taken di-
rectly or indirectly from external sources are marked as such.

The work has not yet been submitted in the same or similar form to any other ex-
amining authority, and has not been published.

The digitized version of the work corresponds word for word with the version submitted
in written form.

Name, first name:
Number of the matriculation:

Date:
Signed:

92

Acknowledgement

Acknowledgement

At this point, I want to thank the many people who make it possible for me to do this
Thesis. I want to thank Professor Miguel A.L. Marques and Doctor Jonathan Schmidt,
who proposed the project to me. They also proposed to me the Frameworks used in
this Thesis. Espesscylie Jonathan Schmidt helped me a lot in evolving the Code. I
also want to thank Ahmad W. Huran, who helped me a lot with every question due
to the density functional theory and other chemistry-related questions. In addition, I
want to thank every other member in the group of professor Miguel Marques for their
valuable suggestions. Further on, I want to thank Susi Lehtola for his help in evolving
the projection function and for suggestions for the training data. For his enormous help
in writing and improving the Master Thesis itself, I want to thank Doctor Jürgen Henk.
He was not only my second assessor but also massive support for me during the writing
process.

I also want to thank my family, which supports me financially. Furthermore, I want
to thank them for their trust and support over all these years. Further, I want to thank
all my friends who supported me in the creation process of this Thesis and the entire
study of physics. A special thanks should go to Matteo Tabusso. He is not only a close
friend but also a companion on this Thesis as he does his Master Thesis in this group
simultaneously with me. We often tried to help each other if there were any problems.

Last but not least, I want to thank the Institution of Martin-Luther-Universität Halle-
Wittenberg for the opportunity to study physics and do this Thesis.

93

	Abstract
	Introduction
	Basics
	Density functional theory
	The Variational Principle
	Hartree-Fock Approximation
	Electron Correlation

	Hohenberg-Kohn Theorems
	Kohn-Sham Approach
	The exchange-correlation potential
	The LCAO Ansatz in the Kohn-Sham Equations
	Basis Sets

	Optimization using Machine Learning
	Gradient Descent
	Adam

	Automatic differentiation
	Forward Mode
	Reverse Mode

	Optimize Basis Set
	Projection between two basis sets
	The loss functions
	The optb module
	Optimization example of a basis set for molecule

	Evaluation
	Select Optimized basis sets
	About the successful optimizations
	Non-weighted loss function optimization
	Evaluation of the weighted optimization
	The machine learning
	Comparison of Adam and gradient descent
	Learning rate dependency

	Résumé and Outlook
	Bibliography
	Appendix
	Declaration of authorship
	Acknowledgement

